Supplementary Control of Air–Fuel Ratio Using Dynamic Matrix Control for Thermal Power Plant Emission
Abstract
1. Introduction
2. DMC Combustion Control
2.1. Conventional Boiler Combustion
2.2. Supplementary DMC for AFR
2.3. Constraints of Proposed DMC
3. Applications to Power Plants
3.1. 600-MW Drum-Type Thermal Power Plant
3.2. 1000-MW Once-Through Type Thermal Power Plant
4. Simulation Results
4.1. Simulation of 600-MW Drum-Type Thermal Power Plant
4.2. Simulation of 1000-MW Once-Through Type Thermal Power Plant
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lewtas, J. Air pollution combustion emissions: Characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects. Rev. Mutat. Res. 2007, 636, 95–133. [Google Scholar] [CrossRef] [PubMed]
- Streets, D.G.; Waldhoff, S.T. Present and future emissions of air pollutants in China: SO2, NOx and CO. Atmos. Environ. 2000, 34, 363–374. [Google Scholar] [CrossRef]
- Wiatros-Motyka, M. Optimising Fuel Flow in Pulverised Coal and Biomass-Fired Boilers; IEA Clean Coal Centre: London, UK, 2016. [Google Scholar]
- Li, S.; Xu, T.; Hui, S.; Wei, X. NOx emission and thermal efficiency of a 300MWe utility boiler retrofitted by air staging. Appl. Energy 2009, 86, 1797–1803. [Google Scholar] [CrossRef]
- Dukelow, S.G. The Control of Boilers; Instrument Society of America, Research Triangle Park: North Carolina, USA, 1986. [Google Scholar]
- Wang, Y.; Yu, X. New coordinated control design for thermal-power-generation units. IEEE Trans. Ind. Electron. 2010, 57, 3848–3856. [Google Scholar] [CrossRef]
- Wei, L.; Fang, F. H∞-LQR-based coordinated control for large coal-fired boiler–turbine generation units. IEEE Trans. Ind. Electron. 2017, 64, 5212–5221. [Google Scholar] [CrossRef]
- Takiyama, T.; Shiomi, E.; Morita, S. Air–fuel ratio control system using pulse width and amplitude modulation at transient state. JSAE Rev. 2001, 22, 537–544. [Google Scholar] [CrossRef]
- Bhowmick, M.; Bera, S.C. An approach to optimum combustion control using parallel type and cross-limiting type technique. J. Process Control 2012, 22, 330–337. [Google Scholar] [CrossRef]
- Liu, Z.H.; He, G.X.; Wang, L.Z. Optimization of furnace combustion control system based on double cross-limiting strategy. In Proceedings of the 2010 International Conference on Intelligent Computation Technology and Automation, Changsha, China, 11–12 May 2010; pp. 858–861. [Google Scholar]
- Zanoli, S.M.; Barchiesi, D.; Astolfi, G.; Barboni, L. Advanced control solutions to increase efficiency of a furnace combustion process. In Proceedings of the European Control Conference (ECC), Zurich, Switzerland, 17–19 July 2013; pp. 4316–4321. [Google Scholar]
- Hou, Z.; Xiong, S. On Model-Free Adaptive Control and its Stability Analysis. IEEE Trans. Auto. Control 2019. [Google Scholar] [CrossRef]
- Bara, O.; Fliess, M.; Join, C.; Day, J.; Djouadi, S.M. Toward a model–free feedback control synthesis for treating acute inflammation. J. Theor. Biol. 2018, 478, 26–37. [Google Scholar] [CrossRef]
- Safaei, A.; Mahyuddin, M.N. Optimal model–free control for a generic MIMO nonlinear system with application to autonomous mobile robots. Int. J. Adapt. Control Signal Process. 2018, 32, 792–815. [Google Scholar] [CrossRef]
- Lee, S.D.; Bae, Y.G.; Jung, S. A Decentralized Model Identification Scheme by Random-walk RLS Process for Robot Manipulators: Experimental Studies. J. Control Autom. Syst. 2019, 17, 1856–1865. [Google Scholar] [CrossRef]
- Roman, R.C.; Precup, R.E.; Radac, M.B. Model–free fuzzy control of twin rotor aerodynamic systems. In 2017 25th Mediterranean Conference on Control and Automation (MED); IEEE: Valletta, Malta, 2017; pp. 559–564. [Google Scholar]
- Precup, R.E.; Radac, M.B.; Roman, R.C.; Petriu, E.M. Model–free sliding mode control of nonlinear systems: Algorithms and experiments. Inf. Sci. 2017, 381, 176–192. [Google Scholar] [CrossRef]
- Roman, R.C.; Precup, R.E.; David, R.C. Second Order Intelligent Proportional-Integral Fuzzy Control of Twin Rotor Aerodynamic System. Procedia Comput. Sci. 2019, 139, 372–380. [Google Scholar] [CrossRef]
- Kim, D.; Oh, H.S.; Moon, I.C. Black-box Modeling for Aircraft Maneuver Control with Bayesian Optimization. J. Control Autom. Syst. 2019, 17, 1558–1568. [Google Scholar] [CrossRef]
- Roman, R.C.; Radac, M.B.; Precup, R.E.; Petru, E.M. Virtual reference feedback tuning of model–free control algorithms for servo systems. Machines 2017, 5, 25. [Google Scholar] [CrossRef]
- Qin, S.; Badgwell, T. A survey of industrial model predictive control technology. Control Eng. Pract. 2003, 11, 733–764. [Google Scholar] [CrossRef]
- Gracia, C.E.; Prett, D.M.; Morari, M. Model predictive control: Theory and practice−A survey. Automatica 1989, 25, 335–348. [Google Scholar] [CrossRef]
- Lee, J.H. Model predictive control in the process industries: Review, current status and future outlook. In Proceedings of the 2nd Asian Control Conference, Seoul, Korea, 22–25 July 1997; pp. 435–438. [Google Scholar]
- Moon, U.C.; Lee, K.Y. Step-response model development for dynamic matrix control of a drum-type boiler-turbine system. IEEE Trans. Energy Convers. 2009, 24, 423–430. [Google Scholar] [CrossRef]
- Moon, U.C.; Lee, Y.; Lee, K.Y. Practical dynamic matrix control for thermal power plant coordinated control. Control Eng. Pract. 2018, 71, 154–163. [Google Scholar] [CrossRef]
- Lee, Y.; Yoo, E.; Lee, T.; Moon, U.C. Supplementary control of conventional coordinated control for 1000MW ultra-supercritical thermal power plant using dynamic matrix control. J. Electr. Eng. Technol. 2018, 13, 97–104. [Google Scholar]
- Moon, U.C.; Lee, K.Y. An adaptive dynamic matrix control with fuzzy-interpolated step-response model for a drum-type boiler-turbine system. IEEE Trans. Energy Convers. 2011, 26, 393–401. [Google Scholar] [CrossRef]
- Usoro, P.B. Modeling and Simulation of a Drum Boiler-Turbine Power Plant under Emergency State Control. Master’s Thesis, Massachusetts Institute. Technology, Cambridge, MA, USA, May 1977. [Google Scholar]
- Heo, J.S.; Lee, K.Y. A multiagent-system-based intelligent reference governor for multiobjective optimal power plant operation. IEEE Trans. Energy Convers. 2008, 23, 1082–1092. [Google Scholar] [CrossRef]
- Lee, K.Y.; Van Sickel, J.H.; Hoffman, J.A.; Jung, W.H.; Kim, S.H. Controller design for a large-scale ultrasupercritical once-through boiler power plant. IEEE Trans. Energy Convers. 2010, 25, 1063–1070. [Google Scholar] [CrossRef]
- Go, G.; Moon, U.C. A water-wall model of supercritical once-through boilers using lumped parameter method. J. Electr. Eng. Technol. 2014, 9, 1900–1908. [Google Scholar] [CrossRef]
Λ | Γa | Γf | p | m | βa | βf |
---|---|---|---|---|---|---|
1 | 1 | 10 | 300 | 100 | 2% | 1.25% |
Λ | Γa | Γf | p | m | βa | βf |
---|---|---|---|---|---|---|
10 | 1 | 0.1 | 300 | 100 | 1.36% | 0.02% |
Multi-Loop | 23.069 |
DMC | 1.137 |
Percentage of DMC/Multi-loop | 4.93% |
Multi-loop | 8.613 |
DMC | 1.237 |
Percentage of DMC/ Multi-loop | 14.36% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, T.; Han, E.; Moon, U.-C.; Lee, K.Y. Supplementary Control of Air–Fuel Ratio Using Dynamic Matrix Control for Thermal Power Plant Emission. Energies 2020, 13, 226. https://doi.org/10.3390/en13010226
Lee T, Han E, Moon U-C, Lee KY. Supplementary Control of Air–Fuel Ratio Using Dynamic Matrix Control for Thermal Power Plant Emission. Energies. 2020; 13(1):226. https://doi.org/10.3390/en13010226
Chicago/Turabian StyleLee, Taehyun, Eungsu Han, Un-Chul Moon, and Kwang Y. Lee. 2020. "Supplementary Control of Air–Fuel Ratio Using Dynamic Matrix Control for Thermal Power Plant Emission" Energies 13, no. 1: 226. https://doi.org/10.3390/en13010226
APA StyleLee, T., Han, E., Moon, U.-C., & Lee, K. Y. (2020). Supplementary Control of Air–Fuel Ratio Using Dynamic Matrix Control for Thermal Power Plant Emission. Energies, 13(1), 226. https://doi.org/10.3390/en13010226