Facies and the Architecture of Estuarine Tidal Bar in the Lower Cretaceous Mcmurray Formation, Central Athabasca Oil Sands, Alberta, Canada
Abstract
:1. Introduction
2. Study Area and Methodology
3. Facies Association and Interpretation
3.1. Facies Association FA1
3.1.1. Facies F1: Mud Clast Breccia
3.1.2. Facies F2: High-Angle Cross-Stratified Sands
3.1.3. Facies F3: Low-Angle Cross-Stratified Sands
3.1.4. Facies F4: Consolidated Sand Clay
3.1.5. Facies F5: Sand Wave Bedding Mud
3.1.6. Facies F6 Clay and F7 Carbonaceous Muds
3.1.7. Facies Association FA1 Interpretation
3.2. Facies Association FA2
3.2.1. Facies F8: F8a (Sand-Dominated Layers) and F8b (Mud-Dominated Layers)
3.2.2. Facies F9: Laminated Sand with Mud
3.2.3. F Facies Association FA2 Interpretation
3.3. Facies Association FA3
3.3.1. Facies F10: Cross-Bed Sand
3.3.2. Facies F11: Clean Sand
3.3.3. Facies Association 3 Interpretation
3.4. Facies Association FA4
3.4.1. Facies F12: Bioturbated Sand
3.4.2. Facies F13: Glauconitic muddy sand
3.4.3. Facies Association FA4: Interpretation
4. Discussion
4.1. 3-D architecture of Estuarine Tidal Bar
4.2. Two Tidal Bar Types Within McMurray Formation and Comparisons with Modern Deposits
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dalrymple, R.W. Tidal depositional systems. In Faceis Models: Response to Sea Level Change; Walder, R.G., Jamee, N.P., Eds.; Geological Association of Canada: St. John’s, NL, Canada, 1990; pp. 195–218. [Google Scholar]
- Wilson, J.C.; Elliott, M.; Cutts, N.D.; Mander, L.; Mendao, V.; Perez-Dominguez, R.; Phelps, A. Coastal and offshore wind energy generation: Is it environmentally benign. Energies 2010, 2, 1383–1422. [Google Scholar] [CrossRef]
- Chaumillon, E.; Fenies, H.; Billy, J.; Breilh, J.F.; Richetti, H. Tida and fluvial controls on the internal architecture and sedimentary facies of a lobate estuarine tidal bar (the Plassac Tidal bar in the Gironde Estuary, France). Mar. Geol. 2013, 346, 58–72. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, C.; Dalrymple, M.R.W.; Gao, S.; Li, Y.L. Facies architecture and depositional model of a macrotidal incised-vally succession (Qiantang River estuary, eastern China), and differences from other macrotidal systems. Geol. Soc. Am. Bull. 2014, 126, 499–522. [Google Scholar] [CrossRef]
- Iglesias, I.; Venancio, S.; Pinho, J.L.; Avilez-Valente, P.; Vieira, J.M.P. Two models solutions for the douro estuary: Flood risk assessment and breakwater effects. Estuaries and Coasts 2019, 42, 348–364. [Google Scholar] [CrossRef]
- Allen, J.R.L. Studies in fluviatile sedimentation: Bars, bar complexes and sandstone sheets (low sinuosity braided streams) in the Brownstonenews (L’Devonian), Welsh Borders. Sediment. Geol. 1983, 33, 237–293. [Google Scholar] [CrossRef]
- Caston, V.N.D. Linear sand banks in the southern North Sea. Sedimentology 1972, 18, 63–78. [Google Scholar] [CrossRef]
- Charitha, P.; Collins, M. Mechanisms for linear sandbank formation and maintenance in relation to dynamical oceanographic observations. Prog. Oceanogr. 1987, 19, 117–176. [Google Scholar]
- Xavier, B.; Eric, C. Contribution of simulation on historical bathymetries to the understanding of evolutions of estuarine sand banks. C.R. Geosciences 2005, 337, 1375–1383. [Google Scholar]
- Labrecque, P.A.; Jensen, J.L.; Hubbard, S.M. Cyclicity in lower cretaceous point bar deposits with implications for reservoir characterization, Athabasca oil sands, Alberta, Canada. Sediment. Geol. 2011, 242, 18–33. [Google Scholar] [CrossRef]
- Musial, G.; Reynaud, J.Y.; Gingras, M.; Fenies, H.; Labourdette, R.; Parize, O. Subsurface and outcrop characterization of large tidally influenced point bars of the Cretaceous McMurray Formation (Alberta, Canada). Sediment. Geol. 2012, 11, 156–172. [Google Scholar] [CrossRef]
- Dale, A.L.; David, C. Westerly derived early Cretaceous gold paleoplacers in the Western Canada Foreland Basin, southwestern Alberta: Tectonic and economic implications. Can. J. Earth Sci. 1995, 32, 1079–1092. [Google Scholar]
- Milovan, F.; Stephen, M.H.; Ronald, J.P.; Larter, S.R. Recognition of down-valley translation in tidally influenced meandering fluvial deposits, Athabasca Oil Sands (Cretaceous), Alberta, Canada. Mar. Pet. Geol. 2011, 29, 219–232. [Google Scholar]
- Derald, G.S.; Stephen, M.H.; Dale, A.L.; Milovan, F. Counter point bar deposits: Lithofacies and reservoir significancein the meandering modern Peace River and ancient McMurray Formation, Alberta, Canada. Sedimentology 2009, 56, 1655–1669. [Google Scholar]
- Cant, D.J. Sedimentological and sequence stratigraphic organization of a foreland clastic wedge, Mannille Group, Western Canada Basin. J. Sediment Res. 1996, 66, 1137–1147. [Google Scholar]
- Cant, D.J. Regional stratigraphy, sedimentology and petroleum geology of the grand rapids formation, Mannville group, Northeastern Alberta. Bull. Can. Pet. Geol. 1997, 2, 141–154. [Google Scholar]
- Herin, F.J.; Cotterill, D.K.; Berhane, H. An Atlas of Litho-Facies of the McMurray Formation, Athabasca Oil Sands Deposits, Northeastern Alberta: Surface and Subsurface; Alberta Energy and Utilities Board: Edmonton, AB, Canada, 2000; p. 216.
- Herin, F.J.; Cotterill, D.K. Field Guide: Regional Sedimentology and Processes of Deposition of the Athabasca Oil Sands, Northestern Alberta; Alberta Energy and Utilities Board: Edmonton, AB, Canada, 2006; p. 157.
- Herin, F.J. The cretaceous McMurray oil sands, Alberta, Canada: A world-class tidally influenced fluvial-estuarine system. Dev. Sediment. 2015, 68, 561–621. [Google Scholar]
- Miall, A.D. The environmental hydrogeology of the oil sands, Lower Athabasca area, Alberta. Geosci. Can. 2013, 40, 215–233. [Google Scholar] [CrossRef]
- Pemberton, S.G.; Flach, P.D.; Mossop, G.D. Trace fossils from the Athabasca oil sands, Alberta, Canada. Science 1982, 217, 825–827. [Google Scholar] [CrossRef]
- Langenberg, C.W.; Hein, F.J.; Lawton, D.; Cunningham, J. Seismic modeling of fluvial-estuarine deposits in the Athabasca oil sands using ray-tracing techniques, Steepbank River area, northeastern Alberta. Bull. Can. Petrol. Geol 2002, 50, 347–353. [Google Scholar] [CrossRef]
- Gingras, M.; Maceachern, J.A.; Dashtgard, S.E.; Pemberton, G. The significance of trace fossils in the McMurray Formation, Alberta, Canada. Bull. Can. Pet. Geol 2016, 64, 233–250. [Google Scholar] [CrossRef]
- Martinius, A.W.; Fustic, M.; Garner, D.L.; Jablonski, B.V.J.; Strobl, R.S.; MacEachern, J.A.; Dashtgard, S.E. Reservoir characterization and multiscale heterogeneity modeling of inclined heterolithic strata for bitumen-production forecasting, McMurray Formation, Corner, Alberta, Canada. Mar. Pet. Geol. 2017, 82, 336–361. [Google Scholar] [CrossRef]
- Shinn, Y.J.; Lee, H.S.; Kwon, Y.K.; Kwak, W.J. Lithofacies distribution and depositional environment in the Lower Cretaceous McMurray Formation, BlackGold Lease, northern Alberta: Implications for geometry and distribution of oil sand reservoirs. Geosci. J. 2014, 18, 325–337. [Google Scholar] [CrossRef]
- Carrigy, M.A. Geology of the McMurray Formation, Part III, General Geology of the McMurray Area; Alberta Research Council: Edmonton, AB, Canada, 1959; pp. 1–130. [Google Scholar]
- Tang, M.M.; Zhao, H.Y.; Ma, H.F.; Lu, S.F.; Chen, Y.M. Study on CO2 huff-n-puff of horizontal wells in continental tight oil reservoirs. Fuel 2017, 188, 140–154. [Google Scholar] [CrossRef]
- Miall, A.D. Facies architecture in clastic sedimentary basins. In Frontieers in Sedimentary Geology, New Perspectives of Basin Analysis; Springer-Verlag: New York, NY, USA, 1988; pp. 67–81. [Google Scholar]
- Hugues, F.; Tastet, J.P. Facies and architecture of an estuarine tidal bar (the Trompeloup bar, Gironde Estuary, SW France). Mar. Geol. 1998, 150, 149–169. [Google Scholar]
- Shanmugam, G.; Poffenberger, M.; Alava, J.T. Tide-dominated estuarine facies in the Hollin and Napo formations, Sacha field, Oriente Basin, Ecuador. AAPG Bull. 2000, 84, 652–682. [Google Scholar]
- Willis, B.J.; Gable, S. Sharp-based, tidal-dominated deltas of the Sego sandstone book cliffs, Utah, USA. Sedimentology 2001, 48, 479–506. [Google Scholar] [CrossRef]
- Anthony, E.J.; Oyede, L.M.; Lang, J. Sedimentation in a fluvial infilling, barrier-bound estuary on a wave-dominated, microtidal coast: The Oueme River estuary, Benin, west Africa. Sedimentology 2002, 49, 1095–1112. [Google Scholar] [CrossRef]
- Piret, P.B. Stacked fluvial and tidal-dominated estuarine deposits in high-frequency sequences of Eocene Central Basin. Sedimentology 2005, 52, 391–428. [Google Scholar]
- Nardin, T.R.; Feldman, H.R.; Carter, B.J. Stratigraphic architecture of a large-scale point-bar complex in the McMurray Formation: Syncrude’s Mildred Lake Mine, Alberta, Canada. Heavy-oil and oil-sand petroleum systems in Alberta and beyond. AAPG Stud. Geol. 2013, 64, 273–311. [Google Scholar]
- Jablonski, B.V.J.; Dalrymple, R.W.; Marzo, M. Recognition of strong seasonality and climatic cyclicity in an ancient, fluvially dominated, tidally influenced point bar: Middle McMurray Formation, Lower Steepbank River, north-eastern Alberta, Canada. Sedimentology 2016, 63, 552–585. [Google Scholar] [CrossRef]
- Dashtgard, S.E. Linking invertebrate burrow distributions (neoichnology) to physicochemical stresses on a sandy tidal flat: Implications for the rock record. Sedimentology 2011, 58, 1303–1325. [Google Scholar] [CrossRef]
- Hauck, T.E.; Dashtgard, S.E.; Pemberton, S.G.; Gingras, M.K. Brackish-water ichnological trends in a microtidal barrier island/embayment system, Kouchibouguac National Park, New Brunswick, Canada. Palaios 2009, 24, 478–496. [Google Scholar] [CrossRef]
- Brekke, H.; Evoy, R.W. Use of dipmeter data in the definition of the internal architecture of point bar deposits in the Athabasca oilsands: Implications for the middle McMurray Formation in the Hangingstone area, alberta. West Tex. Geol. Soc. 2004, 4, 157. [Google Scholar]
- Collinson, J.D. Alluvial sediments. In Sedimentary Environment: Processes, Facies and Stratigraphy; Reading, H.G., Ed.; Blackwell Science Ltd.: Oxford, UK, 1996; pp. 37–82. [Google Scholar]
- Anna, P.; Piret, P.B. Regressive to transgressive transits reflected in tidal bars, Middle Devonian Baltic Basin. Sediment. Geol. 2009, 218, 48–60. [Google Scholar]
- Erin, E.C.; Arnott, R.W.C. Facies distribution and stratigraphic architecture of the Lower Cretaceous McMurray Formation, Lewis Property, northeastern Alberta. Bull. Can. Pet. Geol. 2007, 55, 99–124. [Google Scholar]
- Plink, B.P. Effects of tides on deltaic deposition: Causes and responses. Sediment. Geol 2012, 279, 107–133. [Google Scholar] [CrossRef]
- Maguregui, T.; Tyler, N. Evolution of middle Eocene tide-dominated deltaic sandstones, Lagunillas field, Maracaibo basin, western Venezuela. In The Three-Dimensional Facies Architecture of Terrigenous Clastic Sediments and Its Implications for Hydrocarbon Recovery and Discovery: SEPM Concepts in Sedimentology and Palaeontology; Miall, A.D., Tyler, N., Eds.; GeoScienceWorld: Mclean, VA, USA, 1991; pp. 233–244. [Google Scholar]
- Longhitano, S.G.; Donatella, M.; Ronald, J.S.; Ainsworth, R.B. Tidal depositional systems in the rock record: A review and new insights. Sediment. Geol. 2012, 279, 2–22. [Google Scholar] [CrossRef]
- Mcrae, C.G. Glauconite. Earth Sci. Rev. 1972, 8, 397–440. [Google Scholar] [CrossRef]
- Odin, G.S. Significance of green particles in arenites. In Provenance of Arenites; Zuffa, G.G., Ed.; Springer-Verlag: New York, NY, USA, 1985; pp. 279–307. [Google Scholar]
- Cody, J.; Youn, S.; Riddy, A.; Gittins, S. Implications of reservoir compartments on the design and execution of the Christina Lake thermal recovery projects. In Proceedings of the Canadian Society of Petroleum Geologists Annual Meeting, Calgary, AB, Canada, 18–22 June 2001; CSPG Special Publications: Calgary, AB, Canada, 2001. [Google Scholar]
- Blakney, B. Tidally-Influenced Point Bars: Morphological Signatures and their Application to the McMurray Formation. Available online: https://www.geoconvention.com/archives/2004/105S0130.pdf (accessed on 29 April 2019).
- Robinson, A.H.W. Ebb–flood channel systems in sandy bays and estuaries. Geography 1960, 45, 183–199. [Google Scholar]
- Harris, P.T. Large-scale bedforms as indicators of mutually evasive sand transport and the sequential infilling of wide-mouthed estuaries. Sediment. Geol. 1988, 57, 273–298. [Google Scholar] [CrossRef]
- Ludwick, J.C. Tidal currents and zig-zag sand shoals in a wide estuary entrance. Geol. Soc. Am. Bull. 1974, 85, 717–726. [Google Scholar] [CrossRef]
- Knebel, H.J. Modern sedimentary environments in a large tidal estuary, Delaware Bay. Mar. Geol. 1989, 86, 119–136. [Google Scholar] [CrossRef]
- Harris, P.T.; Pattiaratchi, C.B.; Cole, A.R.; Keene, J.B. Evolution of subtidal sandbanks in Moreton Bay, eastern Australia. Mar. Geol. 1992, 103, 225–247. [Google Scholar] [CrossRef]
- Billy, J.; Eric, C.; Hugues, F.; Clement, P. Tidal and fluvial controls on the morphological evolution of a lobate estuary bar: The Plassac Tidal Bar in the Gironde Estuary (France). Geomorphology 2012, 170, 86–97. [Google Scholar] [CrossRef]
- Cremer, M. Etude Dynamique de L’evolution des Bancs de Sable Dans Lestudaire de la Gironde. Ph.D. Thesis, University of Bordeaux, Bordeaux, France, 1975. [Google Scholar]
- Fenies, H.; De Resseguier, A.; Tastet, J.P. Intertidal clay-drape couplets (Gironde Estuary, France). Sedimentology 1999, 46, 1–15. [Google Scholar] [CrossRef]
- Leuven, J.R.F.W.; Kleinhans, M.G.; Weisscher, S.A.H.; Vegt, M.V. Tidal sand bar dimensions and shapes in estuaries. Earth Sci. Rev. 2016, 161, 204–223. [Google Scholar] [CrossRef] [Green Version]
Litho-Facies | Litho-Facies Name | Sand Textures | Vsh | Sedimentary Structure | Other Characteristics |
---|---|---|---|---|---|
F1 | Mud clast breccia | fL | 10–40 | Underlying contact is highly erosional and clasts have high cohesion | Mud-clast breccias that are likely the result of point bar erosion |
F2 | High-angle cross-stratified sands | fU | 5–15 | Large cross-stratified sands | Bitumen-stained laminae |
F3 | Low-angle cross-stratified sands | fU-vfU | 10–20 | Low-angle dipping laminated bedding | Biogenic structure: Planolites, Cyrolithes, and Cylindrichnus. |
F4 | Consolidated sand clay | vfU | 40–80 | Consolidated sand clay that shows slightly heterolithic fine-grained sands | Numerous bioturbated sand clay |
F5 | Sand wave bedding mud | vfL | 80–95 | Wavy interbeds and sand lenses with some very small-scale ripple cross-laminae | Massive to laminated mud |
F6 | Clay | vfL | >95 | Silty sand lenses and sand interbeds | Fissile at top becoming less so towards base |
F7 | Carbonaceous muds | vfL | >50 | Silty sand laminae and carbonaceous laminations | Biogenic structure: Rootlets. |
F8a | Sand-dominated layers | vfL-vfU | 20–50 | Black to brown sand interbeds with laminated shale. | F8a and F8b commonly mutual-coexistence |
F8b | Mud dominated layers | vfL | 50–100 | Massive medium-gray clay interbeds with a small amount of bitumen sand. | |
F9 | Laminated sand with mud | fU-mL | 10–20 | Black to brown sand with mm- to cm-scale mud interbeds | Commonly scattered woody and carbonaceous debris |
F10 | Cross-bed sand | mL | 5–10 | Brown to black sand with rare silty laminae | Very rare silty laminae |
F11 | Clean sand | fU-mL | <5 | Massive sand with black moderately to well sorted | Loose sand, low bioturbation intensities |
F12 | Bioturbated sand | fL | 25–30 | Black to brown sub-rounded, moderately sorted sand with scattering acicular mud clasts. | Some mud beds with lightly salty |
F13 | Glauconitic muddy sand | vfL-vfU | 40–80 | Gray-green glauconitic sand with medium-gray silty mud. | Shale percentage 80% at top to 40% at base |
Unit | Length L (km) | Average Width W (km) | Thickness T (m) | LWR | Bar Type |
---|---|---|---|---|---|
1 | 7.08 | 1.69 | 2.66 | 4.19 | ETB |
2 | 11.35 | 1.38 | 2.65 | 8.22 | ETB |
3 | 10.87 | 1.28 | 2.14 | 5.07 | ETB |
4 | 14.71 | 4.30 | 2.79 | 3.42 | LTB |
5 | 15.27 | 4.68 | 2.52 | 3.26 | LTB |
6 | 15.01 | 4.51 | 1.85 | 3.33 | LTB |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, M.; Zhang, K.; Huang, J.; Lu, S. Facies and the Architecture of Estuarine Tidal Bar in the Lower Cretaceous Mcmurray Formation, Central Athabasca Oil Sands, Alberta, Canada. Energies 2019, 12, 1769. https://doi.org/10.3390/en12091769
Tang M, Zhang K, Huang J, Lu S. Facies and the Architecture of Estuarine Tidal Bar in the Lower Cretaceous Mcmurray Formation, Central Athabasca Oil Sands, Alberta, Canada. Energies. 2019; 12(9):1769. https://doi.org/10.3390/en12091769
Chicago/Turabian StyleTang, Mingming, Kexin Zhang, Jixin Huang, and Shuangfang Lu. 2019. "Facies and the Architecture of Estuarine Tidal Bar in the Lower Cretaceous Mcmurray Formation, Central Athabasca Oil Sands, Alberta, Canada" Energies 12, no. 9: 1769. https://doi.org/10.3390/en12091769
APA StyleTang, M., Zhang, K., Huang, J., & Lu, S. (2019). Facies and the Architecture of Estuarine Tidal Bar in the Lower Cretaceous Mcmurray Formation, Central Athabasca Oil Sands, Alberta, Canada. Energies, 12(9), 1769. https://doi.org/10.3390/en12091769