# Design for Reliability: The Case of Fractional-Slot Surface Permanent-Magnet Machines

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. The Slot–Pole Combination

## 3. Machine Optimization

## 4. Performance of the Healthy Combinations

## 5. Analysis of Robustness to Manufacturing Defects

#### 5.1. Eccentricity

#### 5.2. Permanent-Magnet Defects

#### 5.3. Machine Performances vs. Severity of Manufacturing Defects

## 6. Design for Reliability: Robustness Analysis towards Manufacturing Defects as a Function of Slot–Pole Combinations

## 7. Conclusions

- Static and dynamic eccentricities induce new components in the spectra of mechanical quantities. Static eccentricity induces a frequency component proportional to the number of poles $2p$, while dynamic eccentricity induce a frequency component proportional to the number of stator teeth Q.
- Radial force is the most sensitive performance benchmark to manufacturing defects. Specifically, FEA results show how the radial force is deeply affected both by mechanical and by magnetic defects.
- The 12-10DL and 12-14DL were the best performing machines in both healthy and faulty conditions and they showed the lowest difference in terms of TPI.
- According to the $\Delta $ TPI, the 9-8DL was the slot–pole combination mostly affected by manufacturing imperfections.
- Finally, the slot–pole combination with lowest performance at healthy conditions (6-4DL) showed the best improvement in term of performance at defective condition.

## Author Contributions

## Funding

## Conflicts of Interest

## Abbreviations

SPM | Surface Permanent-Magnet |

FEA | Finite-Element Analysis |

MMF | Magneto-Motive Force |

B-EMF | Back-Electro-Motive Force |

HCF | Highest Common Factor |

FFT | Fast Fourier Transformation |

THD | Total Harmonic Distortion |

DL | Double Layer |

SL | Single Layer |

TPI | Total Performance Index |

## References

- El-Refaie, A.M.; Jahns, T.M. Optimal flux weakening in surface PM machines using fractional-slot concentrated windings. Int. IEEE Trans. Ind. Appl.
**2005**, 41, 790–800. [Google Scholar] [CrossRef] - Bianchi, N.; Dai Prè, M.; Alberti, L.; Fornasiero, E. Theory and Design of Fractional-Slot PM Machines, 1st ed.; CLEUP sc; Coop. Libraria Editrice Università di Padova: Padova, Italy, 2007; ISBN 978-88-6129-122-5. [Google Scholar]
- Abdennadher, I.; Masmoudi, A.; Castiello, M.; Bianchi, N. On the effect of the rotor polarity on the performance of fractional Slot SPM machines. In Proceedings of the International Conference on Sustainable Mobility Applications, Renewables and Technology (SMART), Kuwait City, Kuwait, 23–25 November 2015; pp. 1–6. [Google Scholar]
- Deng, A.Q.; Hong, B.S.; Xiao, C.F. Influence of design parameters on cogging torque in directly driven permanent magnet synchronous wind generators. In Proceedings of the International International Conference on Electrical Machines and Systems, Tokyo, Japan, 15–18 November 2009; pp. 1–5. [Google Scholar]
- Fornasiero, E.; Alberti, L.; Bianchi, N.; Bolognani, S. Considerations on Selecting Fractional-Slot Nonoverlapped Coil Windings. IEEE Trans. Ind. Appl.
**2013**, 49, 1316–1324. [Google Scholar] [CrossRef] - Min, S.G.; Sarlioglu, B. Design optimization of surface permanent magnet machines with fractional slot concentrated windings. In Proceedings of the International 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia), Seoul, Korea, 27–30 May 2015; pp. 707–713. [Google Scholar]
- Liu, Y.; Zhu, Z.Q. Electromagnetic performance comparison of 18-slot/26-pole and 18-slot/10-pole fractional slot permanent magnet surface-mounted machines. In Proceedings of the International 20th International Conference on Electrical Machines and Systems (ICEMS), Sydney, Australia, 1–14 August 2017; pp. 1–6. [Google Scholar]
- El-Refaie, A.M.; Jahns, T.M. Impact of Winding Layer Number and Magnet Type on Synchronous Surface PM Machines Designed for Wide Constant-Power Speed Range Operation. Int. IEEE Trans. Energy Convers.
**2008**, 23, 53–60. [Google Scholar] [CrossRef] - Boazzo, B.; Pellegrino, G.; Vagati, A. Multipolar SPM Machines for Direct-Drive Application: A General Design Approach. Int. IEEE Trans. Ind. Appl.
**2014**, 50, 327–337. [Google Scholar] [CrossRef] [Green Version] - Bianchi, N.; Bolognani, S. Design techniques for reducing the cogging torque in surface-mounted PM motors. Int. IEEE Trans. Ind. Appl.
**2002**, 38, 1259–1265. [Google Scholar] [CrossRef] - Cros, J.; Viarouge, P. Synthesis of high performance PM motors with concentrated windings. Int. IEEE Trans. Energy Convers.
**2002**, 17, 248–253. [Google Scholar] [CrossRef] - Gasparin, L.; Cernigoj, A.; Markic, S.; Fiser, R. Additional Cogging Torque Components in Permanent-Magnet Motors Due to Manufacturing Imperfections. Int. IEEE Trans. Magn.
**2009**, 45, 1210–1213. [Google Scholar] [CrossRef] - Wu, L.; Qu, R.; Song, B.; Bi, H.; Jing, O.; Yang, G.; Du, C. Analysis of cogging torque in surface permanent magnet machine with manufacturing tolerances. In Proceedings of the International 41st Annual Conference of the IEEE Industrial Electronics Society (IECON), Yokohama, Japan, 9–12 November 2015. [Google Scholar]
- Jia, S.; Qu, R.; Li, J.; Fu, Z.; Chen, H.; Wu, L. Analysis of FSCW SPM servo motor with static, dynamic and mixed eccentricity in aspects of radial force and vibration. In Proceedings of the International 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 4–18 September 2014; pp. 1745–1753. [Google Scholar]
- Dorrell, D.G.; Hsieh, M.; Guo, Y. Unbalanced Magnet Pull in Large Brushless Rare-Earth Permanent Magnet Motors With Rotor Eccentricity. Int. IEEE Trans. Magn.
**2009**, 45, 4586–4589. [Google Scholar] [CrossRef] - Ginzarly, R.; Hoblos, G.; Moubayed, N. Electromagnetic and vibration finite element model for early fault detection in permanent magnet machine. In Proceedings of the International 10th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes SAFEPROCESS (IFAC-PapersOnLine), Warsaw, Poland, 27–30 August 2018. [Google Scholar]

**Figure 1.**Magneto-Motive Flux (MMF) spectra for different double layer slot–pole combinations: (

**a**) MMF of 6-4DL; (

**b**) MMF of 9-8DL; (

**c**) MMF of 9-10DL; (

**d**) MMF of 12-10DL; and (

**e**) MMF of 12-14.

**Figure 2.**Distribution of magnetic flux density of optimized machines: (

**a**) 6-4; (

**b**) 9-8; (

**c**) 9-10; (

**d**) 12-10; and (

**e**) 12-14.

**Figure 3.**Examples of a machine: without eccentricity (

**a**); static eccentricity (

**b**); and dynamic eccentricity (

**c**).

**Figure 4.**FFT of the radial forces: 9-8DL (

**a**); 6-4DL and 12-14DL slot-pole combination without static eccentricity (

**b**); 6-4DL (

**c**); 9-8DL (

**d**); 12-14DL slot-pole combinations with static eccentricity of 0.2 mm (

**e**).

**Figure 5.**Cogging torque comparison over a B-EMF period of 9-8DL (

**a**) and 9-10DL (

**b**) with a static eccentricity of $0.2$ mm.

**Figure 6.**FFT of the mean torque of 9-8DL and 9-10DL without and with dynamic eccentricity of $0.2$ mm. (

**a**) 9-8DL without defect; (

**b**) 9-8DL with dynamic eccentricity; (

**c**) 9-10DL without imperfection; and (

**d**) 9-10DL with imperfection.

**Figure 9.**Cogging torque FFT of 12-14DL: in healthy condition (

**a**); with magnets dislocation (

**b**); and with radial force FFT with magnet dislocation (

**c**).

**Figure 10.**Correlation between severity of magnetic defects and machine performances of slot–pole combination 12-14DL: (

**a**) trend of torque ripple; (

**b**) trend of cogging torque; and (

**c**) trend of radial force for increasing values of magnetic defects.

**Figure 11.**Correlation between severity of mechanical defects and machine performances of slot–pole combinations 9-8DL and 12-14DL: (

**a**) trend of torque ripple; (

**b**) trend of cogging torque; and (

**c**) trend of radial force for increasing values of mechanical defects.

**Figure 12.**Kiviat diagrams of healthy machines for different slot–pole combinations (

**a**) and of faulty machines (

**b**); and slot–pole legend (

**c**).

Benchmarks | Unit |
---|---|

Mean Torque | Nm |

Torque Ripple | % |

Cogging Torque | Nm |

Radial Force | N |

THD of B-EMF | % |

Slot–Pole Combinations | |||||||
---|---|---|---|---|---|---|---|

6-4 | 9-8 | 9-10 | |||||

Parameters | Symbol | SL | DL | SL | DL | SL | DL |

Poles | $2p$ | 4 | \ | 8 | \ | 10 | |

Stator Slots | Q | 6 | \ | 9 | \ | 9 | |

Highest Common Factor | $HCF$ | 2 | \ | 1 | \ | ||

Cogging Periods vs. Slot Pitch Rotation | $Np$ | 2 | \ | 8 | \ | 10 | |

Slot per Pole per Phase | $SPP$ | 0.5 | \ | 0.38 | \ | 0.3 | |

Winding Factor | ${k}_{w}$ | 0.866 | \ | 0.945 | \ | 0.945 | |

MMF Total Harmonic Distortion related to Torque Ripple | $TH{D}_{MMFripple}$ | 0.302 | 0.302 | \ | 0.101 | \ | 0.102 |

MMF Total Harmonic Distortion | $TH{D}_{MMFtot}$ | 0.745 | 0.66 | \ | 0.977 | \ | 0.702 |

Slot–Pole Combinations | |||||
---|---|---|---|---|---|

12-10 | 12-14 | ||||

Parameters | Symbol | SL | DL | SL | DL |

Poles | $2p$ | 10 | 14 | ||

Stator Slots | Q | 12 | 12 | ||

Highest Common Factor | $HCF$ | 2 | 2 | ||

Cogging Periods vs. Slot Pitch Rotation | $Np$ | 5 | 7 | ||

Slot per Pole per Phase | $SPP$ | 0.4 | 0.3 | ||

Winding Factor | ${k}_{w}$ | 0.966 | 0.933 | 0.966 | 0.966 |

MMF Total Harmonic Distortion related to Torque Ripple | $TH{D}_{MMFripple}$ | 0.160 | 0.145 | 0.162 | 0.146 |

MMF Total Harmonic Distortion | $TH{D}_{MMFtot}$ | 0.887 | 0.867 | 0.736 | 0.689 |

Independent Variables | Symbol |
---|---|

Inner Stator Diameter | ${D}_{i}$ |

Slot Opening at Pole Pitch | ${w}_{so}$ |

Pole Pitch Thickness at Slot Opening | ${h}_{so}$ |

Angular Distance between two magnets | ${w}_{im}$ |

Slot-Pole Combinations | ||||||
---|---|---|---|---|---|---|

Parameter | Symbol | 6-4 | 9-8 | 9-10 | 12-10 | 12-14 |

Stator ExternalDiameter [mm] | ${D}_{e}$ | 92 | 92 | 92 | 92 | 92 |

Stator InternalDiameter [mm] | ${D}_{i}$ | 40 | 46 | 48 | 50 | 47 |

Air-gap thickness [mm] | g | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 |

Tooth Width [mm] | ${w}_{t}$ | 10 | 6.5 | 5 | 5 | 4 |

Stator Ring Height [mm] | ${h}_{bi}$ | 5.5 | 4.5 | 4.5 | 4.5 | 4.5 |

Polar ShoeThickness [mm] | ${h}_{wed}$ | 3.5 | 2.5 | 2.5 | 2 | 2 |

Polar ShoeSlot Opening [mm] | ${h}_{so}$ | 1 | 1 | 1 | 1 | 1 |

Slot Opening Width [mm] | ${w}_{so}$ | 3 | 4 | 4 | 4 | 4 |

Magnet Height [mm] | ${h}_{m}$ | 3 | 3 | 3 | 3 | 3 |

Angular Distancebetween Magnets [deg] | ${w}_{im}$ | 17 | 3 | 3 | 4 | 3 |

Motor Lenght [mm] | ${L}_{stk}$ | 100 | 100 | 100 | 100 | 100 |

Force and Torque | Mass of Materials | |||||||
---|---|---|---|---|---|---|---|---|

Slot–Pole Combinations | Mean Torque [Nm] | Torque Ripple [Nm] | Torque Ripple [%] | Radial Force [N] | Cogging Torque [Nm] | Weight Iron Core [kg] | Weight Copper [kg] | Weight Magnets [kg] |

6-4 | 6.3909 | 1.0152 | 15.8857 | 0 | 0.884 | 2.1745 | 1.1951 | 0.2069 |

9-8 | 8.3917 | 0.3507 | 4.1794 | 347 | 0.048 | 1.8492 | 1.114 | 0.2782 |

9-10 | 8.5726 | 0.4717 | 5.5019 | 35 | 0.0718 | 1.6473 | 1.1568 | 0.2864 |

12-10 | 7.918 | 0.3132 | 3.9562 | 0 | 0.1989 | 1.767 | 0.9801 | 0.2904 |

12-14 | 8.5541 | 0.2685 | 3.139 | 0 | 0.0914 | 1.6737 | 1.1131 | 0.2696 |

Electrical Coefficients | |||
---|---|---|---|

Slot–Pole Combinations | Winding Factor ${\mathit{k}}_{\mathit{w}}$ | THD B-EMF [%] | MMF f1/ Torque Mean |

6-4 | 0.866025 | 4.4483 | 0.129387097 |

9-8 | 0.945214 | 5.6768 | 0.08065112 |

9-10 | 0.945214 | 7.7553 | 0.063143037 |

12-10 | 0.933013 | 2.2574 | 0.089984845 |

12-14 | 0.933013 | 5.6987 | 0.059468559 |

Force and Torque | Mass of Materials | |||||||
---|---|---|---|---|---|---|---|---|

Slot–Pole Combinations | Mean Torque [Nm] | Torque Ripple [Nm] | Torque Ripple [%] | Radial Force [N] | Cogging Torque [Nm] | Weight Iron Core [kg] | Weight Copper [kg] | Weight Magnets [kg] |

6-4 | 6.0022 | 1.3717 | 22.8529 | 187 | 0.884 | 2.1745 | 1.3468 | 0.2069 |

12-10 | 7.5987 | 1.1069 | 14.5676 | 0 | 0.1989 | 1.767 | 1.0601 | 0.2904 |

12-14 | 8.723 | 0.4348 | 4.9843 | 0 | 0.0971 | 1.6737 | 1.2165 | 0.2696 |

Electrical Coefficients | |||
---|---|---|---|

Slot–Pole Combinations | Winding Factor ${\mathit{k}}_{\mathit{w}}$ | THD B-EMF [%] | MMF f1 /Torque Mean |

6-4 | 0.866025 | 4.4618 | 0.068891406 |

12-10 | 0.965926 | 6.4866 | 0.048534618 |

12-14 | 0.965926 | 8.0146 | 0.03018457 |

PM Imperfections | Mean Value | Standard Deviation |
---|---|---|

Demagnetization | 883310$\frac{A}{m}$ | 0.025 |

Magnetic Axis Deviation | 0 | 0.6 |

Dislocation | 0 | 0.2 |

Defect | Value |
---|---|

Standard Deviation of Magnetic Axis Deviation | $\pm 1$ deg |

Standard Deviation of Coercive Field | $\pm 5$% |

Permanent-Magnets Dislocation | 0.25 mm |

Static Eccentricity | 0.2 mm |

Dynamic Eccentricity | 0.2 mm |

Healthy TPI | Defective TPI | $\Delta $ TPI | |
---|---|---|---|

6-4 DL | −4.38 | −2.56 | −1.82 |

9-8 DL | −0.53 | −1.94 | 1.41 |

9-10 DL | 0.37 | −0.01 | 0.38 |

12-10 DL | 2.55 | 2.53 | 0.02 |

12-14 DL | 1.99 | 1.98 | 0.01 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Torreggiani, A.; Bianchini, C.; Davoli, M.; Bellini, A.
Design for Reliability: The Case of Fractional-Slot Surface Permanent-Magnet Machines. *Energies* **2019**, *12*, 1691.
https://doi.org/10.3390/en12091691

**AMA Style**

Torreggiani A, Bianchini C, Davoli M, Bellini A.
Design for Reliability: The Case of Fractional-Slot Surface Permanent-Magnet Machines. *Energies*. 2019; 12(9):1691.
https://doi.org/10.3390/en12091691

**Chicago/Turabian Style**

Torreggiani, Ambra, Claudio Bianchini, Matteo Davoli, and Alberto Bellini.
2019. "Design for Reliability: The Case of Fractional-Slot Surface Permanent-Magnet Machines" *Energies* 12, no. 9: 1691.
https://doi.org/10.3390/en12091691