Comparative Study of Road Lighting Efficiency in the Context of CEN/TR 13201 2004 and 2014 Lighting Standards and Dynamic Control
Abstract
:1. Introduction
- the assurance that a design is the most effective; and
- the designation of the representative area.
2. Street Lighting Design and Optimization
- optimize the design with respect to measurable criteria such as energy efficiency, investment costs or payback period; and
- achieve other subjective goals such as aesthetics.
- how to divide city roads and streets into segments and conflict zones, where a segment is a uniform street length, in terms of its physical structure and traffic-related properties such as number of lanes, parked vehicles, traffic volume, etc., and a conflict zone is an area on which traffic streams might intersect;
- how lighting classes are assigned to the segments and conflict zones, where the lighting classes define exact lighting requirements that need to be met; and
- the proper value of the lighting infrastructure parameters for a given class at a given location, such as pole placement, its height, overhang, tilt, rotation, fixture make and model, light source power settings, etc., which are verified by photometric calculations.
- Prepare the formal specification of the environment that is to be designed.
- Identify and split the design into sub-problems with implicit synchronization, to enable concurrent design processing and speed up the process [33].
- Discover a set of graph transformations that automatically create a correct design and optimize it [31].
3. Preparing Optimal Designs
- design speed or speed limit;
- traffic volume;
- traffic composition;
- separation of carriageway;
- junction density;
- parked vehicles;
- ambient luminosity;
- and navigational task.
- 99 initially identified and designed by a human designer;
- 677 if some of them are split due to the dynamic control requirements; and
- 2268 if the segments are automatically recognized based on actual physical characteristics of the streets and infrastructure.
4. Infrastructure Test Bed
- Static energy consumption was a comparison of energy consumption for 2004 and 2014 standards—taking into account only most optimal design.
- Dynamic energy consumption also considered adaptive control based on traffic intensity.
5. Static Energy Consumption Comparison
- identify the 2014 lighting classes (see Table 3 for more details);
- using newly implemented software, prepare the optimal design compliant with 2014 standard; and
- calculate energy usage with basic light point configurations, i.e., without dynamic control.
6. Dynamic Energy Consumption Comparison
7. Results Discussion
- Calculation of the lighting class based on traffic intensity allows downgrading it by more steps than the 2004 standard.
- The lighting class change depends on the maximum capacity, i.e., the maximum rate of flow at which vehicles can be expected to traverse a lighting segment, instead of fixed values as in the 2004 standard.
- A basic design performed by hand resulted in only 99 different lighting situations, thus 99 different lighting segments.
- An AI-based design, provided by the GRADIS 2.0 Toolkit (commercially available), resulted in 677 different lighting segments.
- A next generation AI-based design, with assisted lighting class identification and highly detailed geo-location, provided by the GRADIS 3.0 Toolkit (not commercially available yet), resulted in over 2268 segments.
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Richon, C.; Mukish, P. LED in Road & Street LightingMarket Analysis, Applications, Technology Trends and Industry Status; Technical Report; Yole Développement SA and Lux Fit SAS: Villeurbanne, France, 2013. [Google Scholar]
- Pins, D.; Bonnet, C. On the relation between stimulus intensity and processing time: Piéron’s law and choice reaction time. Percept. Psychophys. 1996, 58, 390–400. [Google Scholar] [CrossRef]
- CEN. CEN/TR 13201-1:2014, Road Lighting—Part 1: Guidelines on Selection of Lighting Classes; Technical Report; European Commitee for Standardization: Brussels, Belgium, 2014. [Google Scholar]
- CEN. CEN/TR 13201-1:2004, Road Lighting. Selection of Lighting Classes; Technical Report; European Commitee for Standardization: Brussels, Belgium, 2004. [Google Scholar]
- Burgos-Payan, M.; Correa-Moreno, F.; Riquelme-Santos, J. Improving the energy efficiency of street lighting. A case in the South of Spain. In Proceedings of the 2012 9th International Conference on the European Energy Market, Florence, Italy, 10–12 May 2012; pp. 1–8. [Google Scholar] [CrossRef]
- Bhairi, M.N.; Kangle, S.S.; Edake, M.S.; Madgundi, B.S.; Bhosale, V.B. Design and implementation of smart solar LED street light. In Proceedings of the International Conference on Trends in Electronics and Informatics (ICEI), Tirunelveli, India, 11–12 May 2017; pp. 509–512. [Google Scholar] [CrossRef]
- Salata, F.; Golasi, I.; Bovenzi, S.; Vollaro, E.d.L.; Pagliaro, F.; Cellucci, L.; Coppi, M.; Gugliermetti, F.; Vollaro, A.d.L. Energy Optimization of Road Tunnel Lighting Systems. Sustainability 2015, 7, 9664. [Google Scholar] [CrossRef]
- Sędziwy, A. A New Approach To Street Lighting Design. LEUKOS 2016, 12, 151–162. [Google Scholar] [CrossRef]
- Gomez-Lorente, D.; Rabaza, O.; Estrella, A.E.; Pena-Garcia, A. A new methodology for calculating roadway lighting design based on a multi-objective evolutionary algorithm. Expert Syst. Appl. 2013, 40, 2156–2164. [Google Scholar] [CrossRef]
- Rabaza, O.; Pena-Garcia, A.; Perez-Ocon, F.; Gomez-Lorente, D. A simple method for designing efficient public lighting, based on new parameter relationships. Expert Syst. Appl. 2013, 40, 7305–7315. [Google Scholar] [CrossRef]
- Wojnicki, I.; Kotulski, L. Empirical Study of How Traffic Intensity Detector Parameters Influence Dynamic Street Lighting Energy Consumption: A Case Study in Krakow, Poland. Sustainability 2018, 10, 1221. [Google Scholar] [CrossRef]
- Wojnicki, I.; Kotulski, L. Improving Control Efficiency of Dynamic Street Lighting by Utilizing the Dual Graph Grammar Concept. Energies 2018, 11, 402. [Google Scholar] [CrossRef]
- Wojnicki, I.; Kotulski, L. Street Lighting Control, Energy Consumption Optimization. Artificial Intelligence and Soft Computing; Springer: Cham, Switzerland, 2017; pp. 357–364. [Google Scholar] [CrossRef]
- Bielecka, M.; Bielecki, A.; Ernst, S.; Wojnicki, I. Prediction of Traffic Intensity for Dynamic Street Lighting. In Proceedings of the Federated Conference on Computer Science and Information Systems (FedCSIS), Prague, Czech Republic, 3–6 September 2017. [Google Scholar] [CrossRef]
- NBN L 18-002: Recommendations for Special Cases of Public Lighting; Technical Report; Bureau voor Normalisatie: Brussel, Belgium, 1988.
- Ministerie van de Vlaamse Gemeenschap. Ontwerprichtlijnen Voor Voetgangersvoorzieningen. In Vademecum Voetgangersvoorzieningen; Ministerie van de Vlaamse Gemeenschap: Brussel, Belgium, 2003. [Google Scholar]
- Osvětlení Pozemních Komunikací. In Technické Kvalitativní Podmínky Staveb; Ministerstvo Dopravy: Prague, Czech Republic, 2015.
- DIN 67523-2:2010-06: Beleuchtung von Fußgängerüberwegen (Zeichen 293 StVO) Mit Zusatzbeleuchtung—Teil 2: Berechnung Und Messung; Technical Report; Deutsches Institut für Normung: Berlin, Germany, 2010.
- Linee Guida per La Progettazione Degli Attraversamenti Pedonali; Technical Report; Automobile Club d’Italia: Rome, Italy, 2011.
- Håndbok N100: Veg-Og Gateutforming; Technical Report; Statens Vegvesen: Oslo, Norway, 2014.
- Jamroz, K.; Tomczuk, P.; Mackun, T.; Chrzanowicz, M. Wytyczne Prawidłowego Oświetlenia Przejść Dla Pieszych; Technical Report; Ministerstwo Infrastruktury: Warszawa, Poland, 2018.
- Vägbelysningshandboken; Technical Report; Trafikverket: Stockholm, Sweden, 2014.
- Krav För Vägars Och Gators Utformning; Technical Report Trafikverkets Publikation 2015:086; Trafikverket, Sveriges Kommuner och Landsting: Stockholm, Sweden, 2015.
- Beleuchtung von Fussgänger-Überwegen. In SLG Richtlinie 202:2016; Schweizer Licht Gesellschaft: Bern, Switzerland, 2016.
- Technical Report 12: Lighting of Pedestrian Crossings; Technical Report; Institution of Lighting Professionals: Regent House, Great Britain, 2007.
- Dialux. Available online: https://www.dial.de/en/dialux/ (accessed on 22 April 2019).
- Calculux. Available online: http://www.lighting.philips.cz/podpora/podpora-vyrobku/calculux (accessed on 22 April 2019).
- Ulysse. Available online: https://www.schreder.com/ (accessed on 22 April 2019).
- Hölker, F.; Moss, T.; Griefahn, B.; Kloas, W.; Voigt, C.C.; Henckel, D.; Hänel, A.; Kappeler, P.M.; Völker, S.; Schwope, A.; et al. The Dark Side of Light: A Transdisciplinary Research Agenda for Light Pollution Policy. Ecol. Soc. 2010, 15, ES-2010-3685. [Google Scholar] [CrossRef]
- Hölker, F.; Wolter, C.; Perkin, E.K.; Tockner, K. Light Pollution as a Biodiversity Threat. Trends Ecol. Evolut. 2010, 25, 681–682. [Google Scholar] [CrossRef]
- Sędziwy, A. Sustainable Street Lighting Design Supported by Hypergraph-Based Computational Model. Sustainability 2015, 8, 13. [Google Scholar] [CrossRef]
- Wojnicki, I.; Sedziwy, A.; Kotulski, L. Outdoor Lighting Design Process Optimization. In SMARTGREENS 2013: 2nd International Conference on Smart Grids and Green IT Systems; SciTePress: Aachen, Germany, 2013; pp. 231–234. [Google Scholar]
- Kotulski, L.; Sędziwy, A.; Strug, B.; Wojnicki, I.; Ernst, S. Synchronisation methods in graph-based knowledge representation for large-scale design process. Int. J. Des. Eng. 2017, 7, 17–32. [Google Scholar] [CrossRef]
- Leccese, F.; Salvadori, G.; Rocca, M. Critical analysis of the energy performance indicators for road lighting systems in historical towns of central Italy. Energy 2017, 138, 616–628. [Google Scholar] [CrossRef]
- Sedziwy, A.; Kotulski, L. Graph-Based Optimization of Energy Efficiency of Street Lighting. In Artificial Intelligence and Soft Computing; Springer International Publishing: Berlin, Germany, 2015; Volume 9120, pp. 515–526. [Google Scholar] [CrossRef]
- Sedziwy, A.; Kotulski, L. Multi-Agent System Supporting Automated Large-Scale Photometric Computations. Entropy 2016, 18, 76. [Google Scholar] [CrossRef]
- Sędziwy, A.; Kotulski, L. Multi-agent System Supporting Automated GIS-based Photometric Computations. Procedia Comput. Sci. 2016, 80, 824–833. [Google Scholar] [CrossRef] [Green Version]
- Ernst, S.; Labuz, M.; Sroda, K.; Kotulski, L. Graph-Based Spatial Data Processing and Analysis for More Efficient Road Lighting Design. Sustainability 2018, 10, 3850. [Google Scholar] [CrossRef]
- CEN. CEN/TR 13201-3:2015, Road Lighting—Part 3: Calculation of Performance; Technical Report; European Commitee for Standardization: Brussels, Belgium, 2014. [Google Scholar]
- CEN. CEN/TR 13201-5:2015, Road Lighting—Part 5: Energy Performance Indicators; Technical Report; European Commitee for Standardization: Brussels, Belgium, 2015. [Google Scholar]
- Wojnicki, I.; Kotulski, L.; Sędziwy, A.; Ernst, S. Application of Distributed Graph Transformations to Automated Generation of Control Patterns for Intelligent Lighting Systems. J. Comput. Sci. 2017. [Google Scholar] [CrossRef]
- Energy Price Increase. Available online: https://energytransition.org/2018/11/polish-electricity-prices-on-the-rise/ (accessed on 27 December 2018).
- UNI. UNI 11248:2016, Illuminazione Stradale—Selezione Delle Categorie Illuminotecniche; Technical Report; UNI—Ente Italiano di Normazione: Milano, Italy, 2016. [Google Scholar]
Parameter | Options | Description | Weighting Value | |
---|---|---|---|---|
Design speed or speed limit | Very high | V ≥ 100 km/h | 2 | |
High | 70 < V < 100 km/h | 1 | ||
Moderate | 40 < V ≤ 70 km/h | −1 | ||
Low | V ≤ 40 km/h | −2 | ||
Traffic volume | Motorways, multilane routes | Two lane routes | ||
High | >65% of maximum capacity | >45% of maximum capacity | 1 | |
Moderate | 35–65% of maximum capacity | 15–45% of maximum capacity | 0 | |
Low | <35% of maximum capacity | <15% of maximum capacity | −1 |
Segment | ELUMDAT File Describing Luminaire | Power |
---|---|---|
Piastowska | AMPERA MIDI 5068 48 Cree XP-G2 700 mA NW 351322 Flat Glass Extra Clear Smooth | 106 W |
Nawojki | AMPERA MINI 5136 24 Cree XP-G2 700 mA NW 356642 Flat Glass Extra Clear Smooth | 55 W |
Mickiewicza1 | AMPERA MIDI 5096 64 Cree XP-G2 700 mA NW 351332 Flat Glass Extra Clear Smooth | 139 W |
Mickiewicza2 | AMPERA MIDI 5096 64 Cree XP-G2 700 mA NW 351332 Flat Glass Extra Clear Smooth | 139 W |
Mickiewicza3 | AMPERA MAXI 5068 128 Cree XP- G2 500 mA NW 348482 Flat Glass Extra Clear Smooth | 198 W |
Mickiewicza4 | AMPERA MIDI 5096 64 Cree XP-G2 700 mA NW 351332 Flat Glass Extra Clear Smooth | 139 W |
Słowackiego1 | AMPERA MIDI 5096 64 Cree XP-G2 700 mA NW 351332 Flat Glass Extra Clear Smooth | 139 W |
Słowackiego2 | AMPERA MIDI 5096 64 Cree XP-G2 700 mA NW 351332 Flat Glass Extra Clear Smooth | 139 W |
Słowackiego3 | AMPERA MIDI 5096 64 Cree XP-G2 700 mA NW 351332 Flat Glass Extra Clear Smooth | 139 W |
Słowackiego4 | AMPERA MIDI 5096 64 Cree XP-G2 700 mA NW 351332 Flat Glass Extra Clear Smooth | 139 W |
Street | 2014 Lighting Class | 2004 Lighting Class |
---|---|---|
Piastowska | M4 | ME4b |
Nawojki | M3 | ME3c |
Mickiewicza | M2 | ME2 |
Słowackiego | M2 | ME2 |
Street | Power Consumption Change |
---|---|
Piastowska | +7.35% |
Nawojki | −3.19% |
Mickiewicza1 | 0% |
Mickiewicza2 | 0% |
Mickiewicza3 | +1.22% |
Mickiewicza4 | 0% |
Słowackiego1 | 0% |
Słowackiego2 | 0% |
Słowackiego3 | +1.37% |
Słowackiego4 | +2.94% |
Street | CEN/TR 13201 2014 with Control | CEN/TR 13201 2014 Static | CEN/TR 13201 2004 with Control | CEN/TR 13201 2004 Static |
---|---|---|---|---|
Piastowska | 1615.714 | 2861.938 | 2267.119 | 2665.915 |
Nawojki | 4257.996 | 7219.211 | 6560.463 | 7614.784 |
Mickiewicza1 | 5686.712 | 9125.072 | 6881.598 | 9125.072 |
Mickiewicza2 | 4347.843 | 7433.153 | 5550.173 | 7433.153 |
Mickiewicza3 | 8482.795 | 13,500.531 | 11,249.126 | 13,337.874 |
Mickiewicza4 | 5016.716 | 8969.787 | 6226.224 | 8969.787 |
Słowackiego1 | 3550.696 | 6154.507 | 4410.118 | 6154.507 |
Słowackiego2 | 2636.149 | 4462.046 | 3204.570 | 4462.046 |
Słowackiego3 | 3335.755 | 5882.923 | 4097.561 | 5803.424 |
Słowackiego4 | 2300.151 | 4233.572 | 2797.397 | 4112.612 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojnicki, I.; Komnata, K.; Kotulski, L. Comparative Study of Road Lighting Efficiency in the Context of CEN/TR 13201 2004 and 2014 Lighting Standards and Dynamic Control. Energies 2019, 12, 1524. https://doi.org/10.3390/en12081524
Wojnicki I, Komnata K, Kotulski L. Comparative Study of Road Lighting Efficiency in the Context of CEN/TR 13201 2004 and 2014 Lighting Standards and Dynamic Control. Energies. 2019; 12(8):1524. https://doi.org/10.3390/en12081524
Chicago/Turabian StyleWojnicki, Igor, Konrad Komnata, and Leszek Kotulski. 2019. "Comparative Study of Road Lighting Efficiency in the Context of CEN/TR 13201 2004 and 2014 Lighting Standards and Dynamic Control" Energies 12, no. 8: 1524. https://doi.org/10.3390/en12081524
APA StyleWojnicki, I., Komnata, K., & Kotulski, L. (2019). Comparative Study of Road Lighting Efficiency in the Context of CEN/TR 13201 2004 and 2014 Lighting Standards and Dynamic Control. Energies, 12(8), 1524. https://doi.org/10.3390/en12081524