Next Article in Journal
Probabilistic Estimation of the Energy Consumption and Performance of the Lighting Systems of Road Tunnels for Investment Decision Making
Next Article in Special Issue
Combining Weather Stations for Electric Load Forecasting
Previous Article in Journal
Spatiotemporal Correlations in the Power Output of Wind Farms: On the Impact of Atmospheric Stability
Previous Article in Special Issue
Developing and Comparing Different Strategies for Combining Probabilistic Photovoltaic Power Forecasts in an Ensemble Method
Article Menu
Issue 8 (April-2) cover image

Export Article

Open AccessArticle

Microgrid-Level Energy Management Approach Based on Short-Term Forecasting of Wind Speed and Solar Irradiance

Computer Engineering Department, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia
*
Author to whom correspondence should be addressed.
Energies 2019, 12(8), 1487; https://doi.org/10.3390/en12081487
Received: 15 January 2019 / Revised: 8 April 2019 / Accepted: 11 April 2019 / Published: 19 April 2019
(This article belongs to the Special Issue Ensemble Forecasting Applied to Power Systems)
  |  
PDF [6626 KB, uploaded 19 April 2019]
  |  

Abstract

Background: The Distributed Energy Resources (DERs) are beneficial in reducing the electricity bills of the end customers in a smart community by enabling them to generate electricity for their own use. In the past, various studies have shown that owing to a lack of awareness and connectivity, end customers cannot fully exploit the benefits of DERs. However, with the tremendous progress in communication technologies, the Internet of Things (IoT), Big Data (BD), machine learning, and deep learning, the potential benefits of DERs can be fully achieved, although a significant issue in forecasting the generated renewable energy is the intermittent nature of these energy resources. The machine learning and deep learning models can be trained using BD gathered over a long period of time to solve this problem. The trained models can be used to predict the generated energy through green energy resources by accurately forecasting the wind speed and solar irradiance. Methods: We propose an efficient approach for microgrid-level energy management in a smart community based on the integration of DERs and the forecasting wind speed and solar irradiance using a deep learning model. A smart community that consists of several smart homes and a microgrid is considered. In addition to the possibility of obtaining energy from the main grid, the microgrid is equipped with DERs in the form of wind turbines and photovoltaic (PV) cells. In this work, we consider several machine learning models as well as persistence and smart persistence models for forecasting of the short-term wind speed and solar irradiance. We then choose the best model as a baseline and compare its performance with our proposed multiheaded convolutional neural network model. Results: Using the data of San Francisco, New York, and Los Vegas from the National Solar Radiation Database (NSRDB) of the National Renewable Energy Laboratory (NREL) as a case study, the results show that our proposed model performed significantly better than the baseline model in forecasting the wind speed and solar irradiance. The results show that for the wind speed prediction, we obtained 44.94%, 46.12%, and 2.25% error reductions in root mean square error (RMSE), mean absolute error (MAE), and symmetric mean absolute percentage error (sMAPE), respectively. In the case of solar irradiance prediction, we obtained 7.68%, 54.29%, and 0.14% error reductions in RMSE, mean bias error (MBE), and sMAPE, respectively. We evaluate the effectiveness of the proposed model on different time horizons and different climates. The results indicate that for wind speed forecast, different climates do not have a significant impact on the performance of the proposed model. However, for solar irradiance forecast, we obtained different error reductions for different climates. This discrepancy is certainly due to the cloud formation processes, which are very different for different sites with different climates. Moreover, a detailed analysis of the generation estimation and electricity bill reduction indicates that the proposed framework will help the smart community to achieve an annual reduction of up to 38% in electricity bills by integrating DERs into the microgrid. Conclusions: The simulation results indicate that our proposed framework is appropriate for approximating the energy generated through DERs and for reducing the electricity bills of a smart community. The proposed framework is not only suitable for different time horizons (up to 4 h ahead) but for different climates. View Full-Text
Keywords: distributed energy resources; energy management; microgrid; deep learning distributed energy resources; energy management; microgrid; deep learning
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Alhussein, M.; Haider, S.I.; Aurangzeb, K. Microgrid-Level Energy Management Approach Based on Short-Term Forecasting of Wind Speed and Solar Irradiance. Energies 2019, 12, 1487.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Energies EISSN 1996-1073 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top