Next Article in Journal
Design of Robust Total Site Heat Recovery Loops via Monte Carlo Simulation
Previous Article in Journal
Electricity Price Forecasting in the Danish Day-Ahead Market Using the TBATS, ANN and ARIMA Methods
Open AccessArticle

A Novel Energy Optimization Approach for Electrical Vehicles in a Smart City

Laboratory of proceeding, energetic, environment and electric systems LR18E534, National school of engineering of Gabès, University of Gabès, Gabès 6072, Tunisia
*
Author to whom correspondence should be addressed.
Energies 2019, 12(5), 929; https://doi.org/10.3390/en12050929
Received: 22 February 2019 / Revised: 5 March 2019 / Accepted: 6 March 2019 / Published: 10 March 2019
Electric Vehicles (EVs) have emerged rapidly across the globe as a powerful eco-friendly initiative that if integrated well with an urban environment could be iconic for the host city’s commitment to sustainable mobility and be a key ingredient of the smart city concept. This paper examines ways that will help us to develop a better understanding of how EVs can achieve energy use optimization and be connected with a smart city. As a whole, the present study is based on an original idea that would be useful in informing policy-makers, automotive manufacturers and transport operators of how to improve and embrace better EV technologies in the context of smart cities. The proposed approach is based on vehicles’ and buildings’ communication to share some special information related to the vehicles’ status and to the road conditions. EVs can share their own information related to their energy consumption experience on a specific path. This information can be gathered in a gigantic database and used for managing the power inside these vehicles. In this field, this paper exposes a new approach to power management inside an electric vehicle based on two-way communication between vehicles and buildings. The principle of this method is established in two sections; the first one is related to vehicles’ classification and the second one is attached to the buildings’ recommendations, according to the car position. The classification problem is resolved using the support vector classification method. The recommendation phase is resolved using the artificial intelligence principle and a neural network was employed to give the best decision. The optimal decision will be calculated inside the building, according to its position and using the old vehicle’s data, and transferred to the coming vehicle, for optimizing its energy consumption method in the corresponding building zone. Different possibilities and situations in this approach were discussed. The proposed power management methodology was tested and validated using Simulink/Matlab tool. Results related to the battery state of charge and to the consumed energy were compared at the end of this work, to show the efficiency of this approach. View Full-Text
Keywords: smart city; power management; electric vehicle; optimization; classification; state of charge; intelligence smart city; power management; electric vehicle; optimization; classification; state of charge; intelligence
Show Figures

Figure 1

MDPI and ACS Style

Aymen, F.; Mahmoudi, C. A Novel Energy Optimization Approach for Electrical Vehicles in a Smart City. Energies 2019, 12, 929.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map

1
Back to TopTop