Comparative Life Cycle Energy and GHG Emission Analysis for BEVs and PhEVs: A Case Study in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Goal and Scope
2.2. System Boundary
- Well to pump stage (WTT): The extraction, production and transport of feedstock, and the refining, production and distribution of gasoline and electricity
- Pump to wheels stage (TTW): The fuel utilized by vehicles in the use phase
- The production of raw materials
- The manufacturing of vehicle components, including the vehicle body, traction battery and fluids
- The assembly stage
- The distribution and transportation stage
- The maintenance of the vehicle throughout its life time
- The disposal of the vehicle, also known as the end-of-life stage
2.3. Life Cycle Inventory
2.3.1. The Fuel Cycle
2.3.2. The Vehicle Cycle
3. Results
3.1. Fuel Cycle
3.1.1. WTT Stage
3.1.2. TTW Stage
3.1.3. The Entire Fuel Cycle
3.2. Vehicle Cycle
3.2.1. Vehicle Body Production
3.2.2. Battery Production
3.2.3. Fluids Production
3.2.4. Assembly Stage
3.2.5. Transportation Stage
3.2.6. Maintenance Stage
3.2.7. End of Life Stage
3.2.8. Unit-Based Results in the Vehicle Cycle
3.3. The Life Cycle
4. Sensitivity Analyses
4.1. Sensitivity Analysis of Electricity Profile
4.2. Sensitivity Analysis of Driving Distance
4.2.1. Sensitivity Analysis of Lifetime Mileage
4.2.2. Sensitivity Analysis of All-Electric Range
4.3. Sensitivity Analysis of the Recycling Process
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gov, E. China—Oil and Gas | export.gov. Available online: https://www.export.gov/article?id=China-Oil-and-Gas (accessed on 20 August 2018).
- China, I. Energy Saving and New Energy Automotive Industry Development Plan 2012–2020. Available online: https://www.iea.org/policiesandmeasures/pams/china/name-32249-en.php (accessed on 20 August 2018).
- Ma, H.; Balthasar, F.; Tait, N.; Riera-Palou, X.; Harrison, A. A new comparison between the life cycle greenhouse gas emissions of battery electric vehicles and internal combustion vehicles. Energy Policy 2012, 44, 160–173. [Google Scholar] [CrossRef]
- Noshadravan, A.; Cheah, L.; Roth, R.; Freire, F.; Dias, L. Stochastic comparative assessment of life-cycle greenhouse gas emissions from conventional and electric vehicles. Int. J. Life Cycle Assess. 2015, 20, 854–864. [Google Scholar] [CrossRef] [Green Version]
- Mamalis, C.I.C.K. Environmental and economic effects of widespread introduction of electric vehicles in Greece. Eur. Transp. Res. Rev. 2014, 6, 365–376. [Google Scholar] [Green Version]
- Messagie, M.; Boureima, F.S.; Coosemans, T.; Macharis, C.; Mierlo, J.V. A Range-Based Vehicle Life Cycle Assessment Incorporating Variability in the Environmental Assessment of Different Vehicle Technologies and Fuels. Energies 2014, 7, 1467–1482. [Google Scholar] [CrossRef] [Green Version]
- Hao, H.; Qiao, Q.; Liu, Z.; Zhao, F. Impact of recycling on energy consumption and greenhouse gas emissions from electric vehicle production: The China 2025 case. Resour. Conserv. Recycl. 2017, 122, 114–125. [Google Scholar] [CrossRef]
- Peng, T.; Ou, X.; Yan, X. Development and application of an electric vehicles life-cycle energy consumption and greenhouse gas emissions analysis model. Chem. Eng. Res. Des. 2018, 131, 699–708. [Google Scholar] [CrossRef]
- Qiao, Q.; Zhao, F.; Liu, Z.; Jiang, S.; Hao, H. Cradle-to-gate greenhouse gas emissions of battery electric and internal combustion engine vehicles in China. Appl. Energy 2017, 204, 1399–1411. [Google Scholar] [CrossRef]
- Ke, W.; Zhang, S.; He, X.; Wu, Y.; Hao, J. Well-to-wheels energy consumption and emissions of electric vehicles: Mid-term implications from real-world features and air pollution control progress. Appl. Energy 2017, 188, 367–377. [Google Scholar] [CrossRef]
- Onat, N.C.; Kucukvar, M.; Tatari, O. Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States. Appl. Energy 2015, 150, 36–49. [Google Scholar] [CrossRef]
- Casals, L.C.; Martinez-Laserna, E.; García, B.A.; Nieto, N. Sustainability analysis of the electric vehicle use in Europe for CO2 emissions reduction. J. Clean. Prod. 2016, 127, 425–437. [Google Scholar] [CrossRef]
- ISO. ISO 14040: Environmental Management—Life Cycle Assessment—Requirements and Guidelines; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- BYD BYD Europe | BYD Official Web Site. Available online: http://www.bydeurope.com/ (accessed on 26 August 2018).
- Li, X.; Ou, X.; Zhang, X.; Zhang, Q.; Zhang, X. Life-cycle fossil energy consumption and greenhouse gas emission intensity of dominant secondary energy pathways of China in 2010. Energy 2013, 50, 15–23. [Google Scholar] [CrossRef]
- Ou, X.; Yan, X.; Zhang, X. Life-cycle energy consumption and greenhouse gas emissions for electricity generation and supply in China. Appl. Energy 2011, 88, 289–297. [Google Scholar] [CrossRef]
- Xiaoxiongyouhao. Fuel Consumption Calculator_Actual Fuel Consumption Data and Statistical Reports. Available online: https://www.xiaoxiongyouhao.com/ (accessed on 26 August 2018).
- Hou, C.; Wang, H.; Ouyang, M. Survey of daily vehicle travel distance and impact factors in Beijing. IFAC Proc. Vol. 2013, 46, 35–40. [Google Scholar] [CrossRef]
- Semmens, J.; Bras, B.; Guldberg, T. Vehicle manufacturing water use and consumption: An analysis based on data in automotive manufacturers’ sustainability reports. Int. J. Life Cycle Assess. 2014, 19, 246–256. [Google Scholar] [CrossRef]
- Peters, J.F.; Baumann, M.; Zimmermann, B.; Braun, J.; Weil, M. The environmental impact of Li-Ion batteries and the role of key parameters—A review. Renew. Sustain. Energy Rev. 2017, 67, 491–506. [Google Scholar] [CrossRef]
- Peters, J.F.; Weil, M. Providing a common base for life cycle assessments of Li-Ion batteries. J. Clean. Prod. 2018, 171, 704–713. [Google Scholar] [CrossRef]
- Majeau-Bettez, G.; Hawkins, T.R.; Str Mman, A.H. Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles. Environ. Sci. Technol. 2011, 45, 4548–4554. [Google Scholar] [CrossRef] [PubMed]
- GaBi. Life Cycle Assessment LCA Software: GaBi Software. Available online: http://www.gabi-software.com/america/index/ (accessed on 4 July 2018).
- Sullivan, J.L.; Gaines, L. A Review of Battery Life-Cycle Analysis: State of Knowledge and Critical Needs; Argonne National Laboratory: Argonne, IL, USA, 2010. [Google Scholar]
- Mayyas, A.; Qattawi, A.; Omar, M.; Shan, D. Design for sustainability in automotive industry: A comprehensive review. Renew. Sustain. Energy Rev. 2012, 16, 1845–1862. [Google Scholar] [CrossRef]
- Rydh, C.J.; Sandén, B.A. Energy analysis of batteries in photovoltaic systems. Part I: Performance and energy requirements. Energy Convers. Manag. 2005, 46, 1957–1979. [Google Scholar] [CrossRef]
- Mayyas, A.; Omar, M.; Hayajneh, M.; Mayyas, A.R. Vehicle’s lightweight design vs. electrification from life cycle assessment perspective. J. Clean. Prod. 2017, 167, 687–701. [Google Scholar] [CrossRef]
- Sullivan, J.L.; Burnham, A.; Wang, M. Energy-Consumption and Carbon-Emission Analysis of Vehicle and Component Manufacturing; Center for Transportation Research, Energy Systems Division, Argonne National Laboratory: Chicago, IL, USA, 2010. [Google Scholar]
- Papasavva, S.; Kia, S.; Claya, J.; Gunther, R. Life cycle environmental assessment of paint processes. J. Coat. Technol. 2002, 74, 65–76. [Google Scholar] [CrossRef]
- Hawkins, T.R.; Singh, B.; Majeau-Bettez, G.; Mman, A.S. Comparative Environmental Life Cycle Assessment of Conventional and Electric Vehicles. J. Ind. Ecol. 2012, 17, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Aguirre, K.; Eisenhardt, L.; Lim, C.; Nelson, B.; Norring, A.; Slowik, P.; Tu, N. Life cycle Analysis Comparison of a Battery Electric Vehicle and a Conventional Gasoline Vehicle; California Air Resource Board: Sacramento, CA, USA, 2012. [Google Scholar]
- Amarakoon, S.; Smith, J.; Segal, B. Application of Life-Cycle Assessment to Nanoscale Technology: Lithium-Ion Batteries for Electric Vehicles; US Environmental Protection Agency: Washington, DC, USA, 2013.
- De Kleine, R.D.; Keoleian, G.A.; Miller, S.A.; Burnham, A.; Sullivan, J.L. Impact of Updated Material Production Data in the GREET Life Cycle Model. J. Ind. Ecol. 2014, 18, 356–365. [Google Scholar] [CrossRef]
- Ruan, R.; Zhong, S.; Wang, D. Life cycle assessment of copper extraction from biological and pyrometallurgical processes. Multipurp. Util. Miner. Resour. 2010, 39, 33–37. [Google Scholar]
- Liu, F.; Zhao, F.; Liu, Z.; Hao, H. China’s Electric Vehicle Deployment: Energy and Greenhouse Gas Emission Impacts. Energies 2018, 11, 3353. [Google Scholar] [CrossRef]
- Bauer, C.; Hofer, J.; Althaus, H.; Del Duce, A.; Simons, A. The environmental performance of current and future passenger vehicles: Life cycle assessment based on a novel scenario analysis framework. Appl. Energy 2015, 157, 871–883. [Google Scholar] [CrossRef]
- Dunn, J.B.; Gaines, L.; Sullivan, J.; Wang, M.Q. Impact of Recycling on Cradle-to-Gate Energy Consumption and Greenhouse Gas Emissions of Automotive Lithium-Ion Batteries. Environ. Sci. Technol. 2012, 46, 12704–12710. [Google Scholar] [CrossRef] [PubMed]
- Dewulf, J.; Van der Vorst, G.; Denturck, K.; Van Langenhove, H.; Ghyoot, W.; Tytgat, J.; Vandeputte, K. Recycling rechargeable lithium ion batteries: Critical analysis of natural resource savings. Resour. Conserv. Recycl. 2010, 54, 229–234. [Google Scholar] [CrossRef]
- Simon, B.; Weil, M. Analysis of materials and energy flows of different lithium ion traction batteries. Revue de Métallurgie 2013, 110, 65–76. [Google Scholar] [CrossRef]
- Fisher, K.; Wallén, E.; Laenen, P.P.; Collins, M. Battery Waste Management Life Cycle Assessment; Environmental Resources Management (ERM): Oxford, UK, 2006. [Google Scholar]
- Gaines, L.; Sullivan, J.; Burnham, A.; Belharouak, I. Life-Cycle Analysis for Lithium-Ion Battery Production and Recycling. In Proceedings of the Transportation Research Board 90th Annual Meeting, Washington, DC, USA, 23–27 January 2011. [Google Scholar]
Fuel Efficiency | Qin 300 (BEV) | Qin 80 (PHEV) | Qin 450 (BEV) | Qin 100 (PHEV) |
---|---|---|---|---|
Fuel efficiency (electricity) (kWh/100 km) | 15.3 | 18.39 | 15.0 | 16.8 |
Fuel efficiency (gasoline) (L/100 km) | - | 5.88 | - | 6.01 |
Parameters | Qin 300 (BEV) | Qin 80 (PHEV) | Qin 450 (BEV) | Qin 100 (PHEV) |
---|---|---|---|---|
Battery type | LFP | LFP | NMC | NMC |
Total weight (kilogram, kg) | 1950 | 1760 | 1950 | 1785 |
Battery weight (kg) | 494 | 177 | 444 | 183 |
Battery capacity (kWh) | 47.5 | 15.2 | 60.5 | 17.1 |
Capacity density (Wh/kg) | 92.6 | 85.9 | 140.7 | 93.4 |
All-electric range (km) | 300 | 80 | 400 | 100 |
Lifetime mileage (km) 1 | 160,000 | 160,000 | 120,000 | 120,000 |
Vehicle Part | Component | Qin 300 | Qin 80 | Qin 450 | Qin 100 | Battery | Component | Qin 300 | Qin 80 | Qin 450 | Qin 100 |
---|---|---|---|---|---|---|---|---|---|---|---|
The vehicle body | Steel | 943.41 | 1021.48 | 976.61 | 1034.08 | Cathode | Positive active material | 97.63 | 34.98 | 82.12 | 33.85 |
Cast Iron | 28.42 | 81.66 | 29.42 | 82.66 | Carbon black | 5.61 | 2.01 | 4.72 | 1.94 | ||
Aluminium | 92.35 | 100.15 | 95.6 | 101.38 | Polytetrafluoroethylene (PTEF) | 8.98 | 3.21 | 7.55 | 3.12 | ||
Copper | 66.78 | 66.25 | 69.13 | 67.07 | N- Methyl pyrrolidone (NMP) | 31.42 | 11.26 | 26.43 | 10.89 | ||
Glass | 49.73 | 46.22 | 51.48 | 46.79 | Aluminium | 16.28 | 5.83 | 14.64 | 6.04 | ||
Plastic | 171.92 | 163.31 | 177.97 | 165.33 | Anode | Graphite | 34.38 | 12.32 | 36.33 | 14.97 | |
Rubber | 25.57 | 26.19 | 26.47 | 26.51 | PTEF | 1.81 | 0.65 | 1.92 | 0.79 | ||
Others | 42.62 | 29.27 | 44.12 | 29.63 | NMP | 10.14 | 3.63 | 10.71 | 4.42 | ||
In total | 1420.8 | 1534.53 | 1470.8 | 1553.45 | Copper | 37.55 | 13.45 | 33.77 | 13.92 | ||
Fluids | Engine oil | 0 | 3.9 | 0 | 3.9 | Electrolyte | Lithium Hexafluorophosphate | 6.51 | 2.34 | 5.86 | 2.42 |
Brake fluid | 0.9 | 0.9 | 0.9 | 0.9 | Ethylene carbonate | 23.89 | 8.56 | 21.48 | 8.85 | ||
Transmission fluid | 0.8 | 0.8 | 0.8 | 0.8 | Dimethyl carbonate | 23.89 | 8.56 | 21.48 | 8.85 | ||
Powertrain coolant | 7.2 | 10.4 | 7.2 | 10.4 | Separator | Polyethylene | 7.46 | 2.67 | 6.72 | 2.77 | |
Wiper fluid | 2.7 | 2.7 | 2.7 | 2.7 | Polypropylene | 7.46 | 2.67 | 6.72 | 2.77 | ||
Additions | 13.6 | 13.6 | 13.6 | 13.6 | Shell | Polypropylene | 20.93 | 7.50 | 18.92 | 7.80 | |
In total | 25.2 | 32.3 | 25.2 | 32.3 | Aluminium | 146.48 | 52.48 | 132.43 | 54.58 | ||
BMS | Copper | 6.79 | 2.44 | 6.10 | 2.52 | ||||||
Steel | 5.43 | 1.94 | 4.88 | 2.02 | |||||||
Circuit board | 1.36 | 0.49 | 1.22 | 0.50 | |||||||
In total | 1446 | 1566.83 | 1496 | 1585.75 | In total (Battery) | 494 | 177 | 444 | 183 | ||
Total | 1950 | 1760 | 1950 | 1785 |
Component | Qin 300 | Qin 80 | Qin 450 | Qin 100 |
---|---|---|---|---|
Tires | 3 | 3 | 2 | 2 |
Engine oil | 26 | 26 | 20 | 20 |
Wiper fluid | 13 | 13 | 10 | 10 |
Brake fluid | 3 | 3 | 2 | 2 |
Powertrain coolant | 3 | 3 | 2 | 2 |
Gearbox | 1 | 1 | 1 | 1 |
Battery | × | × | × | × |
Energy Consumption | Steel | Aluminum | Copper | Iron |
---|---|---|---|---|
Coal (kg/kg) | - | - | - | - |
Diesel fuel (kg/kg) | - | 0.000031 | - | - |
Petrol (kg/kg) | - | 0.000049 | - | - |
Natural gas (m3/kg) | 0.0066 | 0.0047 | - | - |
Electricity (kWh/kg) | 1.18 | 0.22 | 2.65 | 0.62 |
Regeneration rate (%) | 85.00 | 85.00 | 90.00 | 80.00 |
Fuel Type | Energy Intensity (MJ/MJ) | GHG Emissions Intensity (g CO2-eq/MJ) |
---|---|---|
Gasoline | 1.13 | 20.88 |
Electricity | 2.31 | 198.65 |
Energy Consumption | BEV (LFP) | PHEV (LFP) | BEV (NMC) | PHEV (NMC) |
---|---|---|---|---|
Energy consumption (MJ/vehicle) | 36,627.84 | 23,295.15 | 34,738.78 | 23,743.08 |
The avoided energy (MJ/vehicle) | −14,791.90 | −16,346.10 | −15,312.50 | −16,547.70 |
Net value (MJ/vehicle) | 21,835.93 | 6949.04 | 19,426.32 | 7195.39 |
Vehicle Type | Fuel Cycle | Vehicle Cycle | Total | |||
---|---|---|---|---|---|---|
Energy or GHG Emissions | Energy (MJ/km) | GHG (g CO2-eq/km) | Energy (MJ/km) | GHG (g CO2-eq/km) | Energy (MJ/km) | GHG (g CO2-eq/km) |
BEV (LFP) | 1.50 (59.52%) | 128.73 (63.75%) | 1.02 (40.48%) | 73.20 (36.25%) | 2.52 | 201.93 |
PHEV (LFP) | 1.96 (71.01%) | 198.90 (77.98%) | 0.80 (28.99%) | 56.18 (22.02%) | 2.76 | 255.08 |
BEV (NMC) | 1.47(49.67%) | 126.21 (53.13%) | 1.49 (50.33%) | 111.36 (46.87%) | 2.96 | 237.57 |
PHEV (NMC) | 1.92 (62.95%) | 194.05 (70.45%) | 1.13 (37.05%) | 81.40 (29.55%) | 3.05 | 275.46 |
Energy or GHG Emissions | 2017 | 2020 | 2030 | 2030 (Advanced Technologies) |
---|---|---|---|---|
Energy consumption (MJ/MJ) | 2.31 | 2.25 | 2.12 | 1.91 |
GHG emissions (g/MJ) | 198.65 | 182.34 | 160.41 | 144.37 |
Year | 2017 | 2020 | 2030 | |||
---|---|---|---|---|---|---|
Energy or GHG Emissions | Energy (MJ/km) | Emissions (g CO2-eq/km) | Energy (MJ/km) | Emissions (g CO2-eq/km) | Energy (MJ/km) | Emissions (g CO2-eq/km) |
BEV (LFP) | 2.52 | 201.94 | 2.47 | 188.71 | 2.19 | 157.93 |
Change | - | - | −1.98% | −6.55% | −13.10% | −21.79% |
PHEV (LFP) | 2.76 | 255.08 | 2.73 | 247.94 | 2.35 | 226.96 |
Change | - | - | −1.09% | −2.80% | −14.86% | −11.02% |
BEV (NMC) | 2.96 | 237.57 | 2.91 | 223.75 | 2.61 | 191.61 |
Change | - | - | −1.69% | −5.82% | −11.82% | −19.35% |
PHEV (NMC) | 3.05 | 275.46 | 3.02 | 268.03 | 2.63 | 246.28 |
Change | - | - | −0.98% | −2.70% | −13.77% | −10.59% |
GHG Emissions | BEV (LFP) | PHEV (LFP) | BEV (NMC) | PHEV (NMC) |
---|---|---|---|---|
Minimum (g CO2-eq/km) | 201.93 | 255.08 | 209.73 | 255.10 |
Maximum (g CO2-eq/km) | 226.33 | 273.81 | 237.57 | 275.45 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, S.; Ji, J.; Ma, X. Comparative Life Cycle Energy and GHG Emission Analysis for BEVs and PhEVs: A Case Study in China. Energies 2019, 12, 834. https://doi.org/10.3390/en12050834
Xiong S, Ji J, Ma X. Comparative Life Cycle Energy and GHG Emission Analysis for BEVs and PhEVs: A Case Study in China. Energies. 2019; 12(5):834. https://doi.org/10.3390/en12050834
Chicago/Turabian StyleXiong, Siqin, Junping Ji, and Xiaoming Ma. 2019. "Comparative Life Cycle Energy and GHG Emission Analysis for BEVs and PhEVs: A Case Study in China" Energies 12, no. 5: 834. https://doi.org/10.3390/en12050834