Accurate and Efficient Estimation of Lithium-Ion Battery State of Charge with Alternate Adaptive Extended Kalman Filter and Ampere-Hour Counting Methods
Abstract
:1. Introduction
2. Battery Model and Parameters Identification
2.1. Battery Model
2.2. Parameters Identification
3. AHI Method, AEKF Method, and Alternate Method
3.1. AHI Method
3.2. AEKF Method
- Update the state and error covariance matrix at the step k by using the state and error covariance matrix at the step (k−1) (k = 2, 3 ...):
- Update the Kalman filter gain matrix calculation formula by:
- Update the state and error covariance matrix at the step k with the output error by:
- The mean and covariance of the process noise and the observed noise are given by:
3.3. Alternate Method
3.3.1. AEKF Switching to AHI
3.3.2. AHI Switching to AEKF
4. Experimental Results
4.1. Influence of Current and Voltage Measurement Errors on SOC Estimation
4.2. Comparisons of Different SOC Estimation Methods under the NEDC Condition
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Ren, G.; Ma, G.; Cong, N. Review of electrical energy storage system for vehicular applications. Renew. Sustain. Energy Rev. 2015, 41, 225–236. [Google Scholar] [CrossRef]
- Barré, A.; Deguilhem, B.; Grolleau, S.; Gérard, M.; Suard, F.; Riu, D. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications. J. Power Sources 2013, 241, 680–689. [Google Scholar] [CrossRef]
- Steinhorst, S.; Shao, Z.; Chakraborty, S.; Kauer, M.; Li, S.; Lukasiewycz, M.; Narayanaswamy, S.; Rafique, M.U.; Wang, Q. Distributed reconfigurable battery system management architectures. In Proceedings of the 2016 21st Asia and South Pacific Design Automation Conference (ASP-DAC), Macao SAR, China, 25–28 January 2016; pp. 429–434. [Google Scholar]
- Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 2013, 226, 272–288. [Google Scholar] [CrossRef]
- Smith, K.A. Electrochemical control of lithium-ion batteries. IEEE Control Syst. Mag. 2010, 30, 18–25. [Google Scholar]
- Lotfi, N.; Fajri, P.; Novosad, S.; Savage, J.; Landers, R.; Ferdowsi, M. Development of an experimental testbed for research in lithium-ion battery management systems. Energies 2013, 6, 5231–5258. [Google Scholar] [CrossRef]
- Baccouche, I.; Jemmali, S.; Mlayah, A.; Manai, B.; Amara, N.E. Implementation of an Improved Coulomb-Counting Algorithm Based on a Piecewise SOC-OCV Relationship for SOC Estimation of Li-IonBattery. arXiv, 2018; arXiv:1803.10654. [Google Scholar]
- Einhorn, M.; Conte, F.V.; Kral, C.; Fleig, J. A method for online capacity estimation of lithium ion battery cells using the state of charge and the transferred charge. IEEE Trans. Ind. Appl. 2012, 48, 736–741. [Google Scholar] [CrossRef]
- Ng, K.S.; Moo, C.S.; Chen, Y.P.; Hsieh, Y.C. Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries. Appl. Energy 2009, 86, 1506–1511. [Google Scholar] [CrossRef]
- Chaoui, H.; Ibe-Ekeocha, C.C. State of charge and state of health estimation for lithium batteries using recurrent neural networks. IEEE Trans. Veh. Technol. 2017, 66, 8773–8783. [Google Scholar] [CrossRef]
- Kim, T.; Qiao, W.; Qu, L. Real-time state of charge and electrical impedance estimation for lithium-ion batteries based on a hybrid battery model. In Proceedings of the 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 17–21 March 2013; pp. 563–568. [Google Scholar]
- Kim, I.S. Nonlinear state of charge estimator for hybrid electric vehicle battery. IEEE Trans. Power Electron. 2008, 23, 2027–2034. [Google Scholar]
- Charkhgard, M.; Farrokhi, M. State-of-charge estimation for lithium-ion batteries using neural networks and EKF. IEEE Trans. Ind. Electron. 2010, 57, 4178–4187. [Google Scholar] [CrossRef]
- Singh, P.; Vinjamuri, R.; Wang, X.; Reisner, D. Design and implementation of a fuzzy logic-based state-of-charge meter for Li-ion batteries used in portable defibrillators. J. Power Sources 2006, 162, 829–836. [Google Scholar] [CrossRef]
- Anton, J.C.; Nieto, P.J.; Viejo, C.B.; Vilán, J.A. Support vector machines used to estimate the battery state of charge. IEEE Trans. Power Electron. 2013, 28, 5919–5926. [Google Scholar] [CrossRef]
- Chen, C.; Xiong, R.; Shen, W. A lithium-ion battery-in-the-loop approach to test and validate multiscale dual h infinity filters for state-of-charge and capacity estimation. IEEE Trans. Power Electron. 2018, 33, 332–342. [Google Scholar] [CrossRef]
- Han, J.; Kim, D.; Sunwoo, M. State-of-charge estimation of lead-acid batteries using an adaptive extended Kalman filter. J. Power Sources 2009, 188, 606–612. [Google Scholar] [CrossRef]
- Aung, H.; Low, K.S.; Goh, S.T. State-of-charge estimation of lithium-ion battery using square root spherical unscented Kalman filter (Sqrt-UKFST) in nanosatellite. IEEE Trans. Power Electron. 2015, 30, 4774–4783. [Google Scholar] [CrossRef]
- Meng, J.; Luo, G.; Gao, F. Lithium polymer battery state-of-charge estimation based on adaptive unscented Kalman filter and support vector machine. IEEE Trans. Power Electron. 2016, 31, 2226–2238. [Google Scholar] [CrossRef]
- Hu, X.; Li, S.; Peng, H. A comparative study of equivalent circuit models for Li-ion batteries. J. Power Sources 2012, 198, 359–367. [Google Scholar] [CrossRef]
- Plett, G.L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2. Modeling and identification. J. Power Sources 2004, 134, 262–276. [Google Scholar] [CrossRef]
- Lu, J.X. Research on Characteristic Modeling and SOC Estimation of Lithium Ion Battery; South China University of Technology: Guangzhou, China, 2012; pp. 50–51. [Google Scholar]
- Li, Z.; Huang, J.; Liaw, B.Y.; Zhang, J. On state-of-charge determination for lithium-ion batteries. J. Power Sources 2017, 348, 281–301. [Google Scholar] [CrossRef]
- Zhang, Z.L.; Cheng, X.; Lu, Z.Y.; Gu, D.J. SOC estimation of lithium-ion batteries with AEKF and wavelet transform matrix. IEEE Trans. Power Electron. 2017, 32, 7626–7634. [Google Scholar] [CrossRef]
- Zheng, Y.J.; Xu, S.S.; Zhang, Z.D. Effect of sensor errors on state of charge estimation for ternary lithium-ion cells. J. Autom. Saf. Energy 2017, 8, 198–204. [Google Scholar]
- Available online: https://www.maximintegrated.com/en/landing/index.mvp?lpk=737 (accessed on 12 February 2019).
Battery Chemistry | LMO-LNO/Graphite |
---|---|
Nominal capacity (Ah) | 130 |
Upper cut-off voltage (V) | 4.2 |
Lower cut-off voltage (V) | 2.5 |
Voltage (mV) | −25 | −20 | −15 | −10 | −5 | 0 | 5 | 10 | 15 | 20 | 25 |
Current (%) | −25 | −20 | −15 | −10 | −5 | 0 | 5 | 10 | 15 | 20 | 25 |
Estimation group | Figure number | Voltage drift (mV) | Current drift (%) |
---|---|---|---|
1 | Figure 13a,b | +6 | −8 |
2 | Figure 13c,d | +6 | +8 |
3 | Figure 13e,f | −6 | −8 |
4 | Figure 13g,h | −6 | +8 |
Estimation group | Estimation method | MAE (%) | MAXE (%) | RMSE (%) | STDE (%) | Calculation time (s) |
---|---|---|---|---|---|---|
1 | AHI | 3.54 | 7.25 | 4.10 | 2.07 | 10.00 |
1 | AEKF | 1.49 | 3.77 | 1.74 | 0.89 | 49.00 |
1 | Alt | 2.68 | 3.68 | 2.74 | 0.54 | 12.00 |
2 | AHI | 3.53 | 7.24 | 4.09 | 2.07 | 10.00 |
2 | AEKF | 1.00 | 2.69 | 1.18 | 0.63 | 49.00 |
2 | Alt | 1.12 | 2.69 | 1.28 | 0.63 | 11.00 |
3 | AHI | 3.54 | 7.25 | 4.10 | 2.07 | 10.00 |
3 | AEKF | 1.02 | 2.99 | 1.19 | 0.61 | 49.00 |
3 | Alt | 1.17 | 3.48 | 1.49 | 0.91 | 12.00 |
4 | AHI | 3.53 | 7.24 | 4.09 | 2.07 | 10.00 |
4 | AEKF | 1.79 | 4.47 | 2.23 | 1.32 | 49.00 |
4 | Alt | 3.25 | 4.56 | 3.41 | 1.03 | 11.00 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Li, Z.; Zhang, J.; Su, L.; Ge, H. Accurate and Efficient Estimation of Lithium-Ion Battery State of Charge with Alternate Adaptive Extended Kalman Filter and Ampere-Hour Counting Methods. Energies 2019, 12, 757. https://doi.org/10.3390/en12040757
Liu Z, Li Z, Zhang J, Su L, Ge H. Accurate and Efficient Estimation of Lithium-Ion Battery State of Charge with Alternate Adaptive Extended Kalman Filter and Ampere-Hour Counting Methods. Energies. 2019; 12(4):757. https://doi.org/10.3390/en12040757
Chicago/Turabian StyleLiu, Zhongxiao, Zhe Li, Jianbo Zhang, Laisuo Su, and Hao Ge. 2019. "Accurate and Efficient Estimation of Lithium-Ion Battery State of Charge with Alternate Adaptive Extended Kalman Filter and Ampere-Hour Counting Methods" Energies 12, no. 4: 757. https://doi.org/10.3390/en12040757
APA StyleLiu, Z., Li, Z., Zhang, J., Su, L., & Ge, H. (2019). Accurate and Efficient Estimation of Lithium-Ion Battery State of Charge with Alternate Adaptive Extended Kalman Filter and Ampere-Hour Counting Methods. Energies, 12(4), 757. https://doi.org/10.3390/en12040757