A Stochastic Optimization Method for Energy Storage Sizing Based on an Expected Value Model
Abstract
:1. Introduction
2. Problem Formulations
2.1. Clustering the Load Curve and the PV Curve
2.2. The Optimization Model of Total Profits
2.3. Expected Value Model
3. Case Studies
3.1. Case 1
3.2. Case 2
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ghofrani, M.; Arabali, A.; Etezadi-Amoli, M.; Fadali, M.S. A framework for optimal placement of energy storage units within a power system with high wind penetration. IEEE Trans. Sustain. Energy 2013, 4, 434–442. [Google Scholar] [CrossRef]
- Celli, G.; Mocci, S.; Pilo, F.; Loddo, M. Optimal integration of energy storage in distribution networks. In Proceedings of the 2009 IEEE Bucharest PowerTech, Bucharest, Romania, 28 June–2 July 2009. [Google Scholar]
- Donnellan, B.J.; Vowles, D.J.; Soong, W.L. A review of energy storage and its application in power systems. In Proceedings of the 2015 Australasian Universities Power Engineering Conference (AUPEC), Wollongong, Australia, 27–30 September 2015. [Google Scholar]
- Coppez, G.; Chowdhury, S.; Chowdhury, S.P. Impacts of energy storage in distributed Power Generation: A review. In Proceedings of the 2010 International Conference on Power System Technology, Hangzhou, China, 24–28 October 2010. [Google Scholar]
- Carr, S.; Premier, G.C.; Guwy, A.J.; Dinsdale, R.M. Energy storage for active network management on electricity distribution networks with wind power. IRT Renew. Power Gener. 2014, 8, 249–259. [Google Scholar] [CrossRef]
- Yang, P.; Tang, G.; Nehorai, A. A game-theoretic approach for optimal time-of-use electricity pricing. IEEE Trans. Power Syst. 2013, 28, 884–892. [Google Scholar] [CrossRef]
- Galvis, J.C.; Costa, A. Demand side management using time of use and elasticity price. IEEE Lat. Am. Trans. 2016, 14, 4267–4274. [Google Scholar] [CrossRef]
- Abdeltawab, H.H.; Mohamed, A.R.I. Mobile energy storage scheduling and operation in active distribution systems. IEEE Trans. Ind. Electron. 2017, 64, 6828–6840. [Google Scholar] [CrossRef]
- Ahmad, T. A hybrid grid connected pv battery energy storage system with power quality improvement. Sol. Energy 2016, 125, 180–191. [Google Scholar] [CrossRef]
- Goebel, C.; Jacobsen, H.A. Bringing distributed energy storage to market. IEEE Trans. Power Syst. 2016, 31, 173–186. [Google Scholar] [CrossRef]
- Bludszuweit, H.; Dominguez-Navarro, J.A. A probabilistic method for energy storage sizing based on wind power forecast uncertainty. IEEE Trans. Power Syst. 2011, 26, 1651–1658. [Google Scholar] [CrossRef]
- Morstyn, T.; Momayyezan, M.; Hredzak, B.; Agelidis, V.G. Distributed control for state-of-charge balancing between the modules of a reconfigurable battery energy storage system. IEEE Trans. Power Electron. 2016, 31, 7986–7995. [Google Scholar] [CrossRef]
- Habib, A.H.; Disfani, V.R.; Kleissl, J.; Callafon, R.A.D. Optimal energy storage sizing and residential load scheduling to improve reliability in islanded operation of distribution grids. In Proceedings of the 2017 American Control Conference (ACC), Seattle, WA, USA, 24–26 May 2017. [Google Scholar]
- Lee, T.Y.; Chen, N. Determination of optimal contract capacities and optimal sizes of battery energy storage systems for time-of-use rates industrial customers. IEEE Trans. Energy Convers. 1995, 10, 562–568. [Google Scholar]
- Kargarian, A.; Hug, G. Optimal sizing of energy storage systems: A combination of hourly and intra-hour time perspectives. IET Gener. Transm. Distrib. 2016, 10, 594–600. [Google Scholar] [CrossRef]
- Ahmad, M.A.E.M.; Kazim Bekdache, S.; Barrios, L.A. Optimal sizing for a hybrid power system with wind/energy storage based in stochastic environment. Renew. Sustain. Energy Rev. 2016, 59, 1149–1158. [Google Scholar]
- Karimi, A.; Ranjbar, Z.; Fereidunian, A.; Lesani, H. A stochastic approach to optimal sizing of energy storage systems in a microgrid. In Proceedings of the 2016 Smart Grids Conference (SGC), Kerman, Iran, 20–21 December 2016. [Google Scholar]
- Baker, K.; Hug, G.; Li, X. Energy storage sizing taking into account forecast uncertainties and receding horizon operation. IEEE Trans. Sustain. Energy 2017, 8, 331–340. [Google Scholar] [CrossRef]
- Li, F.; Wang, L. Generalized Expected Value Model for Stochastic Programming and Its Application in Transportation Problems. In Proceedings of the 2009 First International Conference on Information Science and Engineering, Nanjing, China, 26–28 December 2009. [Google Scholar]
- Goldberg, M.; Shlien, S. A clustering scheme for multispectral images. IEEE Trans. Syst. Man Cybern. 1978, 8, 86–92. [Google Scholar] [CrossRef]
- Maulik, U.; Bandyopadhyay, S. Performance evaluation of some clustering algorithms and validity indices. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 1650–1654. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Y.; Wei, Z.; Sun, G.; Sun, Y.; Shen., H. Life Cycle Cost Based Optimal Configuration of Battery Energy Storage System in Distribution Network. Power Syst. Technol. 2015, 39, 264–270. (In Chinese) [Google Scholar]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Atwa, Y.M.; El-Saadany, E.F.; Salama, M.M.A.; Seethapathy, R.; Assam, M.; Conti, S. Adequacy evaluation of distribution system including wind/solar dg during different modes of operation. IEEE Trans. Power Syst. 2011, 26, 1945–1952. [Google Scholar] [CrossRef]
Parameter | Li-ion | NaS | VRB | PSB | VRLA |
---|---|---|---|---|---|
CP(CNY/kW) | 2780 | 1600 | 2800 | 1050 | 2000 |
CE(CNY/kWh) | 1360 | 1250 | 650 | 450 | 950 |
CM(CNY/kWa) | 65 | 60 | 60 | 60 | 70 |
w/% | 90 | 80 | 70 | 60 | 85 |
T/year | 15 | 15 | 15 | 15 | 10 |
Time/h | 1‒8 | 9‒12 | 13‒17 | 18‒21 | 22‒24 |
---|---|---|---|---|---|
Price/CNY | 0.3200 | 1.1002 | 0.6601 | 1.1002 | 0.6601 |
Energy of ESS (kWh) | The Total Profits in Twelve Different Scenarios (105 CNY) | Expected Profits (105 CNY) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | S11 | S12 | ||
E = 2700 | 8.45 | 8.18 | 8.46 | 8.46 | 8.46 | 8.45 | 8.46 | 8.46 | 8.46 | 8.46 | 8.45 | 8.18 | 8.43 |
E = 2800 | 9.26 | 8.91 | 9.28 | 9.28 | 9.28 | 9.22 | 9.28 | 9.28 | 9.28 | 9.28 | 9.26 | 8.91 | 9.24 |
E = 2900 | 10.08 | 9.60 | 10.09 | 10.09 | 10.09 | 10.00 | 10.09 | 10.09 | 10.09 | 10.09 | 10.08 | 9.60 | 10.03 |
E = 3000 | 10.89 | 10.29 | 10.90 | 10.90 | 10.90 | 10.74 | 10.90 | 10.90 | 10.90 | 10.90 | 10.89 | 10.29 | 10.82 |
E = 3100 | 11.71 | 10.99 | 11.72 | 11.67 | 11.72 | 11.48 | 11.72 | 11.72 | 11.72 | 11.72 | 11.71 | 10.99 | 11.61 |
E = 3200 | 12.52 | 11.64 | 12.53 | 12.45 | 12.53 | 12.21 | 12.53 | 12.53 | 12.53 | 12.53 | 12.52 | 11.64 | 12.38 |
E = 3300 | 11.16 | 10.28 | 11.17 | 11.09 | 11.17 | 10.85 | 11.17 | 11.17 | 11.17 | 11.17 | 11.16 | 10.28 | 11.02 |
E = 3400 | 9.80 | 8.92 | 9.81 | 9.73 | 9.81 | 9.49 | 9.81 | 9.81 | 9.81 | 9.81 | 9.80 | 8.92 | 9.66 |
E = 3500 | 8.44 | 7.56 | 8.45 | 8.37 | 8.45 | 8.13 | 8.45 | 8.45 | 8.45 | 8.45 | 8.44 | 7.56 | 8.30 |
E = 3600 | 7.08 | 6.20 | 7.09 | 7.01 | 7.09 | 6.77 | 7.09 | 7.09 | 7.09 | 7.09 | 7.08 | 6.20 | 6.94 |
E = 3700 | 5.72 | 4.84 | 5.73 | 5.65 | 5.73 | 5.41 | 5.73 | 5.73 | 5.73 | 5.73 | 5.72 | 4.84 | 5.58 |
Battery | Expected Value Model Method | Deterministic Method of Single Scenario | ||||
---|---|---|---|---|---|---|
Power Rating(kW) | Energy Rating (kWh) | Expected Profits (105 CNY) | Power Rating (kW) | Energy Rating (kWh) | Profits (105 CNY) | |
Li-ion | 550 | 4400 | 16.19 | 650 | 5200 | 11.2 |
NaS | 550 | 4400 | 12.07 | 650 | 5200 | 7.16 |
VRB | 550 | 4400 | 16.17 | 650 | 5200 | 12.85 |
PSB | 600 | 4750 | 19.06 | 700 | 5600 | 16.91 |
VRLA | 550 | 4400 | 11.8 | 650 | 5200 | 8.11 |
Energy of ESS (kWh) | The Total Profits in Six Different Scenarios | Expected Profits (105 CNY) | |||||
---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | S6 | ||
E = 2700 | 7.11 | 8.45 | 7.47 | 8.46 | 8.38 | 8.46 | 8.04 |
E = 2800 | 7.84 | 9.26 | 8.20 | 9.28 | 9.15 | 9.28 | 8.82 |
E = 2900 | 8.57 | 10.08 | 8.93 | 10.09 | 9.92 | 10.09 | 9.60 |
E = 3000 | 9.30 | 10.89 | 9.67 | 10.90 | 10.70 | 10.90 | 10.38 |
E = 3100 | 10.02 | 11.71 | 10.40 | 11.72 | 11.46 | 11.72 | 11.16 |
E = 3200 | 10.43 | 12.52 | 10.85 | 12.53 | 11.91 | 12.53 | 11.79 |
E = 3300 | 9.07 | 11.16 | 9.49 | 11.17 | 10.55 | 11.17 | 10.43 |
E = 3400 | 7.71 | 9.80 | 8.13 | 9.81 | 9.19 | 9.81 | 9.07 |
E = 3500 | 6.35 | 8.44 | 6.77 | 8.45 | 7.83 | 8.45 | 7.71 |
E = 3600 | 4.99 | 7.08 | 5.41 | 7.09 | 6.47 | 7.09 | 6.35 |
E = 3700 | 3.63 | 5.72 | 4.05 | 5.73 | 5.11 | 5.73 | 4.99 |
Battery | Expected Value Model Method | Deterministic Method of a Single Scenario | ||||
---|---|---|---|---|---|---|
Power Rating (kW) | Energy Rating (kWh) | Expected Profits (105 CNY) | Power Rating (kW) | Energy Rating (kWh) | Profits (105 CNY) | |
Li-ion | 450 | 3600 | 12.47 | 850 | 6800 | 8.52 |
NaS | 450 | 3600 | 9.2 | 850 | 6800 | 4.05 |
VRB | 600 | 4800 | 13.52 | 850 | 6800 | 12.29 |
PSB | 900 | 7200 | 18.57 | 900 | 7200 | 18.41 |
VRLA | 450 | 3600 | 9.09 | 850 | 6800 | 6.17 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Li, J.; Liu, X.; Guo, J.; Xu, S. A Stochastic Optimization Method for Energy Storage Sizing Based on an Expected Value Model. Energies 2019, 12, 702. https://doi.org/10.3390/en12040702
Zhang D, Li J, Liu X, Guo J, Xu S. A Stochastic Optimization Method for Energy Storage Sizing Based on an Expected Value Model. Energies. 2019; 12(4):702. https://doi.org/10.3390/en12040702
Chicago/Turabian StyleZhang, Delong, Jianlin Li, Xueqin Liu, Jianbo Guo, and Shaohua Xu. 2019. "A Stochastic Optimization Method for Energy Storage Sizing Based on an Expected Value Model" Energies 12, no. 4: 702. https://doi.org/10.3390/en12040702
APA StyleZhang, D., Li, J., Liu, X., Guo, J., & Xu, S. (2019). A Stochastic Optimization Method for Energy Storage Sizing Based on an Expected Value Model. Energies, 12(4), 702. https://doi.org/10.3390/en12040702