Determining the Effect of Different Heat Treatments on the Electrical and Morphological Characteristics of Polymer Solar Cells
Abstract
1. Introduction
2. Experimental Methods
3. Results and Discussion
4. Conclusions
Funding
Conflicts of Interest
References
- He, Z.; Xiao, B.; Liu, F.; Wu, H.; Yang, Y.; Xiao, S.; Wang, C.; Russell, T.P.; Cao, Y. Single-junction polymer solar cells with high efficiency and photovoltage. Nat. Photonics 2015, 9, 174. [Google Scholar] [CrossRef]
- Lim, D.C.; Jeong, J.H.; Pyo, K.; Lee, D.; Heo, J.; Choi, J.W.; Lee, C.L.; Seo, J.; Kim, S.; Cho, S. Effect of emissive quantum cluster consisting of 22 Au atoms on the performance of semi-transparent plastic solar cells under low intensity illumination. Nano Energy 2018, 48, 518. [Google Scholar] [CrossRef]
- Meng, L.; Zhang, Y.; Wan, X.; Li, C.; Zhang, X.; Wang, Y.; Ke, X.; Xiao, Z.; Ding, L.; Xia, R.; et al. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 2018, 361, 1094. [Google Scholar] [CrossRef]
- Lee, S.; Park, K.H.; Lee, J.H.; Back, H.; Sung, M.J.; Lee, J.; Kim, J.; Kim, H.; Kim, Y.H.; Kwon, S.K.; et al. Achieving Thickness-Insensitive Morphology of the Photoactive Layer for Printable Organic Photovoltaic Cells via Side Chain Engineering in Nonfullerene Acceptors. Adv. Energy Mater. 2019, 9, 1900044. [Google Scholar] [CrossRef]
- Cheng, P.; Li, G.; Zhan, X.; Yang, Y. Next-generation organic photovoltaics based on non-fullerene acceptor. Nat. Photonics 2018, 12, 131. [Google Scholar] [CrossRef]
- Hou, J.; Inganäs, O.; Friend, R.H.; Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 2018, 17, 119. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.L.; Lau, T.K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P.A.; et al. Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core. Joule 2019, 3, 1140. [Google Scholar] [CrossRef]
- Zhang, S.; Qin, Y.; Zhu, J.; Hou, J. Over 14% Efficiency in Polymer Solar Cells Enabled by a Chlorinated Polymer Donor. Adv. Mater. 2018, 30, 1800868. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Y.; Yang, G.; Jiang, K.; Lin, H.; Ade, H.; Ma, W.; Yan, H. Efficient organic solar cells processed from hydrocarbon solvents. Nat. Energy 2016, 1, 15027. [Google Scholar] [CrossRef]
- Dennler, G.; Scharber, M.C.; Ameri, T.; Denk, P.; Forberich, K.; Waldauf, C.; Brabec, C.J. Design Rules for Donors in Bulk-Heterojunction Tandem Solar Cells Towards 15% Energy-Conversion Efficiency. Adv. Mater. 2008, 20, 579. [Google Scholar] [CrossRef]
- Chang, S.C.; Hsiao, Y.J.; Lin, T.C.; Li, T.S.; Zeng, S.A.; Yu, C.E. Improving Power Conversion Efficiency of P3HT/PCBM based Organic Solar Cells by Optimizing Graphene Doping Concentration and Annealing Temperature. Int. J. Electrochem. Sci. 2016, 11, 5819. [Google Scholar] [CrossRef]
- Darwis, D.; Sesa, E.; Farhamza, D. The Fabrication of Bulk Heterojunction P3HT: PCBM Organic Photovoltaics. Mater. Sci. Eng. 2018, 367, 012029. [Google Scholar] [CrossRef]
- Wang, W.; Guo, S.; Herzig, E.M.; Sarkar, K.; Schindler, M.; Magerl, D.; Philipp, M.; Perlich, J.; Müller-Buschbaum, P. Investigation of morphological degradation of P3HT: PCBM bulk heterojunction films exposed to long-term host solvent vapor. J. Mater. Chem. A 2016, 4, 3743. [Google Scholar] [CrossRef]
- Lee, H.; Kim, T.S.H. Combinatorial Effects of Solvent Type, Thermal Annealing and Al Electrode on the Morphology of P3HT: PCBM Layer. Sci. Adv. Mater. 2016, 8, 618. [Google Scholar] [CrossRef]
- Marumoto, K.; Kosuga, A.; Liu, D.; Takeuchi, O.; Shigekawa, H. Dependence of the Device Performance of Polymer Solar Cells on the Insertion of Metal Nanoparticle Layers at the Electron-collecting Electrodes. Electrochemistry 2017, 85, 272. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, J.; Roh, J.; Kim, H.; Lee, C. Efficiency Improvement of Organic Photovoltaics Adopting Li- and Cd-Doped ZnO Electron Extraction Layer. IEEE J. Photovolt. 2016, 90, 930. [Google Scholar] [CrossRef]
- Kim, J.Y.; Cho, E.; Kim, J.; Shin, H.; Roh, J.; Thambidurai, M.; Kang, C.M.; Song, H.J.; Kim, S.; Kim, H.; et al. Improved photovoltaic performance of inverted polymer solar cells through a sol-gel processed Al-doped ZnO electron extraction layer. Opt. Express 2015, 23, 243417. [Google Scholar] [CrossRef]
- Wu, C.K.; Sivashanmugan, K.; Guo, T.F.; Wen, T.C. Enhancement of Inverted Polymer Solar Cells Performances Using Cetyltrimethylammonium-Bromide Modified ZnO. Materials 2015, 11, 243417. [Google Scholar] [CrossRef]
- Suman, C.K.; Noh, S.; Kim, S.; Lee, S.D.; Lee, C.; Lee, D.; Park, J. Electrical Impedance Studies of the Effect of a Buffer Layer on Organic Bulk Hetrojunction Solar Cells. J. Korean Phys. Soc. 2008, 53, 3278. [Google Scholar] [CrossRef]
- Mengistie, D.A.; Ibrahem, M.A.; Wang, P.C.; Chu, C.W. Highly Conductive PEDOT: PSS Treated with Formic Acid for ITO-Free Polymer Solar Cells. ACS Appl. Mater. Interfaces 2014, 6, 2292. [Google Scholar] [CrossRef]
- Madogni, V.I.; Kounouhéwa, B.; Akpo, A.; Agbomahéna, M.; Hounkpatin, S.A.; Awanou, C.N. Comparison of degradation mechanisms in organic photovoltaicdevices upon exposure to a temperate and a subequatorial climate. Chem. Phys. Lett. 2015, 640, 201. [Google Scholar] [CrossRef]
- Pacholski, C.; Kornowski, A.; Weller, H. Self-Assembly of ZnO: From Nanodots to Nanorods. Angew. Chem. Int. Ed. 2002, 41, 1188. [Google Scholar] [CrossRef]
- Tanaka, S.; Rosli, S.K.B.; Takada, K.; Taniai, N.; Yoshitomi, T.; Ando, H.; Matsumoto, K. Effects of bromination of poly(3-hexylthiophene) on the performance of bulk heterojunction solar cells. RCS Adv. 2017, 7, 46874. [Google Scholar] [CrossRef]
- Friesen, G.; Ozsar, M.E.; Dunlop, E.D. Impedance model for CdTe solar cells exhibiting constant phase element behavior. Thin Solid Film. 2018, 361, 303–308. [Google Scholar]
Annealing Condition | JSC (mA/cm2) | VOC (V) | FF | Efficiency (%) | RS @ VOC (Ω·cm2) | RSH @ JSC (Ω·cm2) |
---|---|---|---|---|---|---|
Un-treated | 4.62 | 0.66 | 0.39 | 1.18 | 38 | 325 |
Pre-annealed | 8.78 | 0.63 | 0.55 | 3.03 | 17 | 1004 |
Post-annealed | 7.36 | 0.57 | 0.46 | 1.93 | 27 | 534 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.Y. Determining the Effect of Different Heat Treatments on the Electrical and Morphological Characteristics of Polymer Solar Cells. Energies 2019, 12, 4678. https://doi.org/10.3390/en12244678
Kim JY. Determining the Effect of Different Heat Treatments on the Electrical and Morphological Characteristics of Polymer Solar Cells. Energies. 2019; 12(24):4678. https://doi.org/10.3390/en12244678
Chicago/Turabian StyleKim, Jun Young. 2019. "Determining the Effect of Different Heat Treatments on the Electrical and Morphological Characteristics of Polymer Solar Cells" Energies 12, no. 24: 4678. https://doi.org/10.3390/en12244678
APA StyleKim, J. Y. (2019). Determining the Effect of Different Heat Treatments on the Electrical and Morphological Characteristics of Polymer Solar Cells. Energies, 12(24), 4678. https://doi.org/10.3390/en12244678