New Models Used to Determine the Dioxins Total Amount and Toxicity (TEQ) in Atmospheric Emissions from Thermal Processes
Abstract
:1. Introduction
2. Experimental
2.1. Data Sources
2.2. Methodology
2.3. Software
3. Results
3.1. Multicollinearity and VIFs
3.2. Testing Previous Models Using 𝕏NEW,INT
3.3. Readjusting Previous Models Using 𝕏OLD and 𝕏NEW
3.4. Validating Model 1′ and Model 2′ Using Bootstrapping
3.5. Comparison with Previous Models
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Eurostat. Municipal Waste Generation and Treatment, by Treatment Method. Available online: http://ec.europa.eu/eurostat/tgm/refreshTableAction.do?tab=table&plugin=1&pcode=tsdpc240&language=en (accessed on 6 March 2017).
- Hogg, D.; Favoino, E.; Nielsen, N.; Thompson, J.; Wood, K.; Penschke, A.; Papageorgiou, D.; Economides, S. Economic Analysis of Options for Managing Biodegradable Municipal Waste: Final Report to the European Commission; Publications Office of the European Union: Luxembourg, 2002. [Google Scholar]
- McKay, G. Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: Review. Chem. Eng. J. 2002, 86, 343–368. [Google Scholar] [CrossRef]
- Shaub, W.M.; Tsang, W. Dioxin formation in incinerators. Environ. Sci. Technol. 1983, 17, 721–730. [Google Scholar] [CrossRef] [PubMed]
- NATO/CCMS. Scientific Basis for the Development of The International Toxicity Equivalency Factor (I-Tef) Method of Risk Assessment for Complex Mixtures of Dioxins and Related Compounds; North Atlantic Treaty Organization committee on the Challenges of Modern Society: Washington, WA, USA, 1988. [Google Scholar]
- Gallo, M.A.; Scheuplein, R.J. Banbury Report 35: Biological Basis for Risk Assessment of Dioxins and Related Compounds; Cold Spring Harbor Laboratory Press: New York, NY, USA, 1991; ISBN10: 0879692359. [Google Scholar]
- Nagao, T.; Golor, G.; Hagenmaier, H.; Neubert, D. Teratogenic potency of 2,3,4,7,8-pentachlorodibenzofuran and of three mixtures of polychlorinated dibenzo-p-dioxins and dibenzofurans in mice. Problems with risk assessment using TCDD toxic-equivalency factors. Arch. Toxicol. 1993, 67, 591–597. [Google Scholar] [CrossRef] [PubMed]
- Van Den Berg, M.; Birnbaum, L.S.; Denison, M.; De Vito, M.; Farland, W.; Feeley, M.; Fiedler, H.; Hakansson, H.; Hanberg, A.; Haws, L.; et al. The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol. Sci. 2006, 93, 223–241. [Google Scholar] [CrossRef] [PubMed]
- Kutz, F.W.; Barnes, D.G.; Bottimore, D.P.; Greim, H.; Bretthauer, E.W. The international toxicity equivalency factor (I-TEF) method of risk assessment for complex mixtures of dioxins and related compounds. Chemosphere 1990, 20, 751–757. [Google Scholar] [CrossRef]
- European Parliament and of the Council. Directive 2010/75/EU on Industrial Emissions. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:334:0017:0119:en:PDF (accessed on 5 March 2017).
- Relvas, H.; Lopes, M.; Coutinho, M. Portuguese inventory of dioxins and furans atmospheric emissions. Chemosphere 2013, 93, 1569–1577. [Google Scholar] [CrossRef]
- Soler, A.; Conesa, J.A.; Iñiguez, M.E.; Ortuño, N. Pollutant formation in the pyrolysis and combustion of materials combining biomass and e-waste. Sci. Total Environ. 2018, 622–623, 1258–1264. [Google Scholar] [CrossRef]
- Edo, M.; Ortuño, N.; Persson, P.; Conesa, J.A.; Jansson, S. Emissions of toxic pollutants from co-combustion of demolition and construction wood and household waste fuel blends. Chemosphere 2018, 203, 506–513. [Google Scholar] [CrossRef]
- Garrido, M.A.; Font, R.; Conesa, J.A. Pollutant emissions from the pyrolysis and combustion of viscoelastic memory foam. Sci. Total Environ 2017, 7, 183–194. [Google Scholar] [CrossRef]
- Moreno, A.I.; Font, R.; Conesa, J.A. Characterization of gaseous emissions and ashes from the combustion of furniture waste. Waste Manag. 2016, 58, 299–308. [Google Scholar] [CrossRef]
- Conesa, J.A.; Ortuño, N.; Abad, E.; Rivera-Austrui, J. Emissions of PCDD/Fs, PBDD/Fs, dioxin like-PCBs and PAHs from a cement plant using a long-term monitoring system. Sci. Total Environ. 2016, 571, 435–443. [Google Scholar] [CrossRef]
- Lacatus, E.; Konnov, A.; De Ruyck, J. Measuring dioxins’ precursors—A way to ensure a cleaner environment. Organohalogen Compd. 2002, 59, 45–48. [Google Scholar]
- Lavric, E.D.; Konnov, A.A.; De Ruyck, J. Modeling the formation of precursors of dioxins during combustion of woody fuel volatiles. Fuel 2005, 84, 323–334. [Google Scholar] [CrossRef]
- Zhang, M.; Buekens, A.; Li, X. Dioxins from biomass combustion: An overview. Waste Biomass Valor. 2017, 8, 1–20. [Google Scholar] [CrossRef]
- Ritter, E.R.; Bozzelli, J.W. Pathways to chlorinated dibenzodioxins and dibenzofurans from partial oxidation of chlorinated aromatics by oh radical: Thermodynamic and kinetic insights. Combust. Sci. Technol. 1994, 101, 153–169. [Google Scholar] [CrossRef]
- Dorofeeva, O.V.; Iorish, V.S.; Moiseeva, N.F. Thermodynamic properties of dibenzo-p-dioxin, dibenzofuran, and their polychlorinated derivatives in the gaseous and condensed phases. 1. thermodynamic properties of gaseous compounds. J. Chem. Eng. Data. 1999, 44, 516–523. [Google Scholar] [CrossRef]
- Dorofeeva, O.V.; Iorish, V.S.; Moiseeva, N.F. Thermodynamic properties of dibenzo-p-dioxin, dibenzofuran, and their polychlorinated derivatives in the gaseous and condensed phases. 2. thermodynamic properties of condensed compounds. J. Chem. Eng. Data 2001, 46, 286–298. [Google Scholar] [CrossRef]
- Dorofeeva, O.V.; Yungman, V.S. Enthalpies of formation of dibenzo-p-dioxin and polychlorinated dibenzo-p-dioxins calculated by density functional theory. J. Phys. Chem. A 2003, 107, 2848–2854. [Google Scholar] [CrossRef]
- Addink, R.; Govers, H.A.J.; Olie, K. Isomer distributions of polychlorinated dibenzo-p-dioxins/dibenzofurans formed during de novo synthesis on incinerator fly ash. Environ. Sci. Technol. 1998, 32, 1888–1893. [Google Scholar] [CrossRef]
- Shao, K.; Li, X.; Wei, Y.; Liu, J. Correlation between PCDD/F, PCB and PCtivBz formed by de novo synthesis. Adv. Mater. Res. 2012, 356–360, 998–1005. [Google Scholar] [CrossRef]
- Gullett, B.K.; Wikström, E. Mono- to tri-chlorinated dibenzodioxin (CDD) and dibenzofuran (CDF) congeners/homologues as indicators of CDD and CDF emissions from municipal waste and waste/coal combustion. Chemosphere 2000, 40, 1015–1019. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, T.; Yang, J.; Cao, X.; Lu, S.; Li, X. Study on on-line detection of dioxins based on correlation model. Chin. J. Environ. Eng. 2014, 8, 3524–3529. [Google Scholar]
- Yan, M.; Li, X.; Zhang, X.; Liu, K.; Yan, J.; Cen, K. Correlation between PAHs and PCDD/Fs in municipal solid waste incinerators. J. Zhejiang Univ. 2010, 44, 1118–1121. [Google Scholar]
- Palmer, D.; Pou, J.O.; Gonzalez-Sabaté, L.; Díaz-Ferrero, J. Multiple linear regression based congener profile correlation to estimate the toxicity (TEQ) and dioxin concentration in atmospheric emissions. Sci. Total Environ. 2018, 622–623, 510–516. [Google Scholar] [CrossRef]
- Vergura, S.; Vacca, F. Bootstrap technique for analyzing energy data from PV plant. In Proceedings of the 2009 International Conference on Clean Electrical Power, Capri, Italy, 9–11 June 2009. [Google Scholar]
- Alborzi, S.; Aminian, A.; Mojtahedi, S.M.H.; Mousavi, S.M. An analysis of project risks using the non-parametric bootstrap technique. In Proceedings of the 2008 IEEE International Conference on Industrial Engineering and Engineering Management, Singapore, 8–11 December 2008. [Google Scholar]
- Hesterberg, T.; Moore, D.S.; Monaghan, S.; Clipson, A.; Epstein, R. Bootstrap Methods and Permutations Test; W.H.Freeman and Company: New York, NY, USA, 2004. [Google Scholar]
- Efron, B. Nonparametric estimates of standard error: The jackknife, the bootstrap, and other methods. Dep. Stat. Stanford Univ. 1980, 68, 589–599. [Google Scholar] [CrossRef]
- AENOR. Stationary Source Emissions—Determination of the Mass Concentration of PCDDs/PCDFs 424 and Dioxin-like PCBs—Part 3: Identification and Quantification of PCDDs/PCDFs; British Standards Institution: London, UK, 2007. [Google Scholar]
- Hoaglin, D.C.; Welsch, R.O.Y.E. The hat matrix in regression and ANOVA. Am. Stat. 1978, 32, 17–22. [Google Scholar]
- Kutner, M.H.; Nachtsheim, C.J.; Neter, J.; Li, W. Applied Linear Statistical Models, 5th ed.; McGraw-Hill Irwin: New York, NY, USA, 2005; ISBN 9780071122214. [Google Scholar]
- Li, X.-D.; Yin, X.-F.; Lu, S.-Y.; Gu, Y.-L.; Yan, J.-H.; Ni, M.-J.; Cen, K.-F. Correlation between PAHs and dioxins formation during coal and municipal solid waste co-incineration process. K. Cheng Je Wu Li Hsueh Pao/J. Eng. Thermophys. 2006, 27, 691–694. [Google Scholar]
𝕏OLD + 𝕏NEW | 𝕏OLD | ||||||
---|---|---|---|---|---|---|---|
R2 | VIF | Congener | Number | Number | Congener | VIF | R2 |
0.9875 | 80.2 | 1,2,3,6,7,8-HxCDF | 5 | 5 | 1,2,3,6,7,8-HxCDF | 639.3 | 0.9984 |
0.9850 | 66.9 | 1,2,3,7,8-PeCDF | 2 | 12 | 1,2,3,7,8-PeCDD | 423.2 | 0.9976 |
0.9745 | 39.2 | 1,2,3,4,7,8-HxCDD | 13 | 16 | 1,2,3,4,6,7,8-HpCDD | 315.2 | 0.9968 |
0.9720 | 35.7 | 1,2,3,4,7,8-HxCDF | 4 | 3 | 2,3,4,7,8-PeCDF | 168.0 | 0.9940 |
0.9682 | 31.5 | 1,2,3,4,6,7,8-HpCDD | 16 | 4 | 1,2,3,4,7,8-HxCDF | 141.0 | 0.9929 |
0.9636 | 27.5 | 1,2,3,4,6,7,8-HpCDF | 8 | 15 | 1,2,3,7,8,9-HxCDD | 121.9 | 0.9918 |
0.9625 | 26.7 | 2,3,4,7,8-PeCDF | 3 | 9 | 1,2,3,4,7,8,9-HpCDF | 99.6 | 0.9900 |
0.9584 | 24.0 | 1,2,3,4,7,8,9-HpCDF | 9 | 2 | 1,2,3,7,8-PeCDF | 81.1 | 0.9877 |
0.9564 | 22.9 | 1,2,3,7,8-PeCDD | 12 | 8 | 1,2,3,4,6,7,8-HpCDF | 64.5 | 0.9845 |
0.9477 | 19.1 | 1,2,3,7,8,9-HxCDD | 15 | 13 | 1,2,3,4,7,8-HxCDD | 52.8 | 0.9811 |
0.9364 | 15.7 | 2,3,4,6,7,8-HxCDF | 6 | 6 | 2,3,4,6,7,8-HxCDF | 31.8 | 0.9686 |
0.9111 | 11.2 | OCDF | 10 | 7 | 1,2,3,7,8,9-HxCDF | 14.1 | 0.9289 |
0.8839 | 8.6 | 1,2,3,6,7,8-HxCDD | 14 | 11 | 2,3,7,8-TCDD | 10.8 | 0.9073 |
0.8039 | 5.1 | 1,2,3,7,8,9-HxCDF | 7 | 17 | OCDD | 9.3 | 0.8925 |
0.7823 | 4.6 | 2,3,7,8-TCDF | 1 | 14 | 1,2,3,6,7,8-HxCDD | 5.2 | 0.8076 |
0.7834 | 4.6 | 2,3,7,8-TCDD | 11 | 10 | OCDF | 3.4 | 0.7096 |
0.5503 | 2.2 | OCDD | 17 | 1 | 2,3,7,8-TCDF | 2.4 | 0.5857 |
Model | Variable | Parameters | ||||
---|---|---|---|---|---|---|
b14 | b10 | b1 | b0 | |||
n = 194 | Value | 0.351 | 0.389 | 0.225 | 1.560 | |
1′ | R2 = 0.9705 | Std. error | 0.0258 | 0.0207 | 0.0216 | 0.0309 |
p-value for H0 : bj = 0 | <0.0000 | <0.0000 | <0.0000 | <0.0000 | ||
n = 194 | Value | 0.349 | 0.182 | 0.378 | 0.762 | |
2′ | R2 = 0.9575 | Std. error | 0.0295 | 0.0237 | 0.0247 | 0.0354 |
p-value for H0 : bj = 0 | <0.0000 | <0.0000 | <0.0000 | <0.0000 |
Model | 1′ | 2′ | ||
---|---|---|---|---|
Regression Parameters | Slope | Intercept | Slope | Intercept |
Value | 1.000 | 0.000 | 1.000 | 0.000 |
Std. Error | 0.0126 | 0.0482 | 0.0152 | 0.0448 |
p-value for H0 : Intercept = 0 | - | 1.0000 | - | 1.0000 |
p-value for H0 : Slope = 1 | 1.0000 | - | 1.0000 | - |
Model | Variable | Parameters | ||||
---|---|---|---|---|---|---|
R2 | b14 | b10 | b1 | b0 | ||
Average | 0.9711 | 0.354 | 0.386 | 0.225 | 1.560 | |
1′ | Std. Error | 0.0056 | 0.0387 | 0.0285 | 0.0316 | 0.0423 |
Percentile 2.5 | 0.9587 | 0.274 | 0.327 | 0.166 | 1.480 | |
Percentile 97.5 | 0.9812 | 0.429 | 0.439 | 0.290 | 1.640 | |
Average | 0.9583 | 0.350 | 0.180 | 0.379 | 0.759 | |
2′ | Std. Error | 0.0085 | 0.0364 | 0.0286 | 0.0356 | 0.0518 |
Percentile 2.5 | 0.9400 | 0.277 | 0.124 | 0.307 | 0.656 | |
Percentile 97.5 | 0.9734 | 0.421 | 0.237 | 0.447 | 0.862 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palmer, D.; Pou, J.O.; Gonzalez-Sabaté, L.; Díaz-Ferrero, J.; Conesa, J.A.; Ortuño, N. New Models Used to Determine the Dioxins Total Amount and Toxicity (TEQ) in Atmospheric Emissions from Thermal Processes. Energies 2019, 12, 4434. https://doi.org/10.3390/en12234434
Palmer D, Pou JO, Gonzalez-Sabaté L, Díaz-Ferrero J, Conesa JA, Ortuño N. New Models Used to Determine the Dioxins Total Amount and Toxicity (TEQ) in Atmospheric Emissions from Thermal Processes. Energies. 2019; 12(23):4434. https://doi.org/10.3390/en12234434
Chicago/Turabian StylePalmer, Damià, Josep O. Pou, Lucinio Gonzalez-Sabaté, Jordi Díaz-Ferrero, Juan A. Conesa, and Nuria Ortuño. 2019. "New Models Used to Determine the Dioxins Total Amount and Toxicity (TEQ) in Atmospheric Emissions from Thermal Processes" Energies 12, no. 23: 4434. https://doi.org/10.3390/en12234434
APA StylePalmer, D., Pou, J. O., Gonzalez-Sabaté, L., Díaz-Ferrero, J., Conesa, J. A., & Ortuño, N. (2019). New Models Used to Determine the Dioxins Total Amount and Toxicity (TEQ) in Atmospheric Emissions from Thermal Processes. Energies, 12(23), 4434. https://doi.org/10.3390/en12234434