Design Considerations of Switched Flux Memory Machine with Partitioned Stators
Abstract
:1. Introduction
2. Machine Configuration and Operating Principle
3. Design Considerations
3.1. Hybrid Magnet Arrangement
3.2. Feasible Stator-Slot/Rotor-Pole Combinations
3.3. Optimization of the Major Design Parameters
3.3.1. Split Ratio
3.3.2. Stator Slot-Opening
3.3.3. Outer Stator Back-Iron Thickness
3.3.4. Outer Stator Tooth-Tip Width
3.3.5. Rotor Pole Ratios
3.3.6. Rotor Radial Thickness
3.3.7. PM Dimensions
4. Experimental Validation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yang, H.; Zhu, Z.Q.; Lin, H. Flux adjustable permanent magnet machines: A technology status review. Chin. J. Electr. Eng. 2016, 2, 14–30. [Google Scholar] [CrossRef]
- Mudhigollam, U.K.; Choudhury, U.; Hatua, K. Wide regulated series hybrid excitation alternator. IET Electr. Power Appl. 2018, 12, 439–446. [Google Scholar] [CrossRef]
- Pothi, N.; Zhu, Z.Q.; Afinowi, I.A.A. Control strategy for hybrid-excited switched-flux permanent magnet machines. IET Electr. Power Appl. 2015, 9, 612–619. [Google Scholar] [CrossRef]
- Zhu, Z.Q.; Al-Ani, M.M.J.; Liu, X. A mechanical flux weakening method for switched flux permanent magnet machines. IEEE Trans. Energy Convers. 2015, 30, 806–815. [Google Scholar] [CrossRef]
- Ostovic, V. Memory motors. IEEE Ind. Appl. Mag. 2003, 9, 52–61. [Google Scholar] [CrossRef]
- Sakai, K.; Hagiwara, K.; Hirano, Y. High-power and high-efficiency permanent-magnet reluctance motor for hybrid electric vehicle. Toshiba Rev. 2005, 60, 41–44. [Google Scholar]
- Maekawa, S.; Yuki, K.; Matsushita, M. Study of the magnetization method suitable for fractional-slot concentrated-winding variable magnetomotive-force memory motor. IEEE Trans. Power Electron. 2014, 29, 4877–4887. [Google Scholar] [CrossRef]
- Limsuwan, N.; Kato, T.; Akatsu, K. Design and evaluation of a variable-flux flux-intensifying interior PM machine. IEEE Trans. Ind. Appl. 2014, 50, 1015–1024. [Google Scholar] [CrossRef]
- Athavale, A.; Erato, D.J.; Lorenz, R. Enabling driving cycle loss reduction in variable flux PMSMs via closed-loop magnetization state control. IEEE Trans. Ind. Appl. 2018, 54, 3350–3359. [Google Scholar] [CrossRef]
- Gagas, B.S.; Sasaki, K.; Athavale, A. Magnet temperature effects on the useful properties of variable flux PM synchronous machines and a mitigating method for magnetization changes. IEEE Trans. Ind. Appl. 2017, 53, 2189–2199. [Google Scholar] [CrossRef]
- Thike, R.; Pillay, P. Characterization of a variable flux machine for transportation using a vector controlled drive. IEEE Trans. Transp. Electrif. 2018, 4, 494–505. [Google Scholar] [CrossRef]
- Ibrahim, M.; Masisi, L.; Pillay, P. Design of variable flux PM machine for reduced inverter rating. IEEE Trans. Ind. Appl. 2014, 51, 3666–3674. [Google Scholar] [CrossRef]
- Ajehaimi, A.M.; Pillay, P. Operating envelopes of the variable flux machine with positive reluctance torque. IEEE Trans. Transp. Electrif. 2018, 4, 707–719. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, Y.; Shen, J. Analysis and improvement of a hybrid permanent-magnet memory motor. IEEE Trans. Energy Concers. 2016, 31, 915–923. [Google Scholar] [CrossRef]
- Yu, C.; Chau, K.T. Design, analysis, and control of DC-excited memory motors. IEEE Trans. Energy Convers. 2011, 26, 479–489. [Google Scholar] [CrossRef]
- Wang, Q.; Niu, S.; Ho, S.L. Design and analysis of novel magnetic flux-modulated mnemonic machines. IET Electr. Power Appl. 2015, 9, 467–477. [Google Scholar] [CrossRef]
- Zhu, X.; Quan, L.; Chen, D. Design and analysis of a new flux memory doubly salient motor capable of online flux control. IEEE Trans. Magn. 2011, 47, 3220–3223. [Google Scholar] [CrossRef]
- Yang, H.; Lin, H.; Zhuang, E. Investigation of design methodology for non-rare-earth variable-flux switched flux memory machines. IET Electr. Power Appl. 2016, 10, 744–756. [Google Scholar] [CrossRef]
- Wu, D.; Liu, X.; Zhu, Z.Q. Switched flux hybrid magnet memory machine. IET Electr. Power Appl. 2015, 9, 160–170. [Google Scholar] [CrossRef]
- Yang, H.; Zhu, Z.Q.; Lin, H. Comparative study of novel variable-flux memory machines having stator permanent magnet topologies. IEEE Trans. Magn. 2015, 51, 1–4. [Google Scholar] [CrossRef]
- Yang, H.; Zhu, Z.Q.; Lin, H. Synthesis of hybrid magnet memory machines having separate stators for traction applications. IEEE Trans. Veh. Technol. 2018, 67, 183–195. [Google Scholar] [CrossRef]
- Yang, H.; Zhu, Z.Q.; Lin, H. Comparative study of hybrid PM memory machines having single- and dual-stator configurations. IEEE Trans. Ind. Electron. 2018, 65, 9168–9178. [Google Scholar] [CrossRef]
- Yang, H.; Zhu, Z.Q.; Lin, H. Performance improvement of partitioned stator switched flux memory machines with triple-magnet configuration. IEEE Trans. Magn. 2016, 52, 1–4. [Google Scholar] [CrossRef]
- Zhu, Z.Q. Overview of novel magnetically geared machines with partitioned stators. IET Electr. Power Appl. 2018, 12, 595–604. [Google Scholar] [CrossRef]
- Evans, D.; Zhu, Z.Q. Novel partitioned stator switched flux permanent magnet machines. IEEE Trans. Magn. 2014, 51, 1–4. [Google Scholar] [CrossRef]
- Wu, Z.Z.; Zhu, Z.Q. Analysis of magnetic gearing effect in partitioned stator switched flux PM machines. IEEE Trans. Energy Convers. 2016, 31, 1239–1249. [Google Scholar] [CrossRef]
- Chu, W.Q.; Zhu, Z.Q.; Zhang, J. Investigation on operational envelopes and efficiency maps of electrically excited machines for electric vehicle applications. IEEE Trans. Magn. 2015, 51, 1–10. [Google Scholar] [CrossRef]
- Hua, H.; Zhu, Z.Q.; Wang, C. Partitioned stator machines with NdFeB and ferrite magnets. IEEE Trans. Ind. Appl. 2017, 53, 1870–1882. [Google Scholar] [CrossRef]
- Chen, J.T.; Zhu, Z.Q. Winding configurations and optimal stator and rotor pole combination of flux-switching PM brushless AC machines. IEEE Trans. Energy Convers. 2010, 25, 293–302. [Google Scholar] [CrossRef]
- Zhu, Z.Q.; Liu, X. Individual and global optimization of switched flux permanent magnet motors. In Proceedings of the 2011 International Conference on Electrical Machines and Systems, Beijing, China, 20–23 August 2011. [Google Scholar]
- Mercorelli, P. An adaptive and optimized switching observer for sensorless control of an electromagnetic valve actuator in camless internal combustion engines. Asian J. Control 2014, 16, 959–973. [Google Scholar] [CrossRef]
- Braune, S.; Liu, S.; Mercorelli, P. Design and control of an electromagnetic valve actuator. In Proceedings of the 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control, Munich, Germany, 4–6 October 2006; pp. 1657–1662. [Google Scholar]
- Zhu, X.; Huang, J.; Quan, L.; Xiang, Z.; Shi, B. Comprehensive sensitivity analysis and multi-objective optimization research of permanent magnet flux-intensifying motors. IEEE Trans. Ind. Electron. 2019, 66, 2613–2627. [Google Scholar] [CrossRef]
- Zhu, X.; Fan, D.; Xiang, Z.; Quan, L.; Hua, W.; Cheng, M. Systematic multi-level optimization design and dynamic control of less-rare-earth hybrid permanent magnet motor for all-climatic electric vehicles. Appl. Energy 2019, 253, 113549. [Google Scholar] [CrossRef]
- Zhu, X.; Jiang, M.; Xiang, Z.; Quan, L.; Hua, W.; Cheng, M. Design and optimization of a flux-modulated permanent magnet motor based on an airgap-harmonic-orientated design methodology. IEEE Trans. Ind. Electron. 2019. [Google Scholar] [CrossRef]
- Zhu, X.; Wu, W.; Quan, L.; Xiang, Z.; Gu, W. Design and multi-objective stratified optimization of a less-rare-earth hybrid permanent magnets motor with high torque density and low cost. IEEE Trans. Energy Convers. 2019, 34, 1178–1189. [Google Scholar] [CrossRef]
Nr | 4 | 5 | 7 | 8 | 10 | 11 |
kd | 1 | 1 | 1 | 1 | 1 | 1 |
kp | 0.5 | 0.87 | 0.87 | 0.87 | 0.5 | 0.87 |
kw | 0.5 | 0.87 | 0.87 | 0.87 | 0.5 | 0.87 |
Nr | 13 | 14 | 16 | 17 | 19 | 20 |
kd | 1 | 1 | 1 | 1 | 1 | 1 |
kp | 0.87 | 0.87 | 0.5 | 0.87 | 0.87 | 0.5 |
kw | 0.5 | 0.87 | 0.87 | 0.87 | 0.5 | 0.87 |
Items | Parameters | ||
---|---|---|---|
Stator slot/rotor pole number | 5/7 | 11/13 | 17/19 |
Outer stator diameter (mm), Dso | 90 | ||
Inner diameter of outer stator (mm), Dsi | 63 | 67 | 68 |
Outer stator tooth width (degree), bst | 16 | 12.5 | 12.5 |
Outer stator opening width (degree), τos | 43 | 46 | 48 |
Outer diameter of inner stator (mm), Dis | 53.5 | 57 | 59 |
Air-gap length (mm), go/gi | 0.5 | ||
Arc of outer rotor edge (deg.), lr1 | 30/26 | 16/18 | 11/10 |
Arc of inner rotor edge (deg.), lr2 | 30/25 | 16/18 | 12/11 |
Rotor thickness (mm), hr | 5.5 | 5.0 | 4.5 |
Active stack length (mm), lef | 25 | ||
LCF PM thickness×length (mm), hm1 × lm1 | 4/12 | 3/12 | 3/12 |
NdFeB thickness×length (mm), hm2 × lm2 | 1.7/8 | 1.5/8 | 1.5/8 |
Rated speed (r/min) | 400 | ||
PM volume (cm3) | 19.7 | 18.2 | 16.9 |
Number of phase armature windings | 84 | ||
Number of magnetizing windings per coil | 100 |
Items | 2D FE | 3D FE | Measured | Error (%, 2D/3D) |
---|---|---|---|---|
Fundamental EMF @ Flux-enhanced | 3.24 | 2.98 | 2.82 | 14.89/5.67 |
Fundamental EMF @ Flux-weakened | 0.93 | 0.84 | 0.79 | 17.72/6.33 |
Rated-load average torque @ Flux-enhanced | 1.88 | 1.75 | 1.68 | 11.90/4.17 |
Rated-load average torque @ Flux-weakened | 0.55 | 0.50 | 0.42 | 23.63/19.05 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, J.; Wei, C.; Yang, H.; Zheng, H.; Wang, W.; Feng, S. Design Considerations of Switched Flux Memory Machine with Partitioned Stators. Energies 2019, 12, 3868. https://doi.org/10.3390/en12203868
Lei J, Wei C, Yang H, Zheng H, Wang W, Feng S. Design Considerations of Switched Flux Memory Machine with Partitioned Stators. Energies. 2019; 12(20):3868. https://doi.org/10.3390/en12203868
Chicago/Turabian StyleLei, Jiaxing, Chaofan Wei, Hui Yang, Hao Zheng, Wenjia Wang, and Shuang Feng. 2019. "Design Considerations of Switched Flux Memory Machine with Partitioned Stators" Energies 12, no. 20: 3868. https://doi.org/10.3390/en12203868
APA StyleLei, J., Wei, C., Yang, H., Zheng, H., Wang, W., & Feng, S. (2019). Design Considerations of Switched Flux Memory Machine with Partitioned Stators. Energies, 12(20), 3868. https://doi.org/10.3390/en12203868