Natural and Managerial Disposability Based DEA Model for China’s Regional Environmental Efficiency Assessment
Abstract
:1. Introduction
2. The DEA Model
2.1. Variable Notations
- (1)
- , : vector including m inputs in the jth region.
- (2)
- , : vector including s desirable outputs in the jth region.
- (3)
- , : vector including h undesirable outputs in the jth region.
- (4)
- : the known slack variable of the ith input.
- (5)
- : the known slack variable for the rth desirable output.
- (6)
- : the known slack variable for the fth undesirable output.
- (7)
- : vector of the unknown intensity or structure variable.
- (8)
- : the range for the jth input.
- (9)
- : the range for the rth desirable output.
- (10)
- : the range for the fth undesirable output.
- (11)
- : the minimum given by the DEA user.
- (12)
- : the invalid scores calculated by the DEA.
2.2. Two Strategies for Dealing with Environmental Regulation
2.3. Unified Efficiency
2.4. Unified Efficiency under Natural Disposability
2.4.1. Unified Efficiency under the Conditions of Natural Disposability and Variable RTS (UENv)
2.4.2. Unified Efficiency under the Conditions of Natural Disposability and Constant RTS (UENc)
2.4.3. Scale Efficiency under the Condition of Natural Disposability
2.5. Unified Efficiency under the Condition of Managerial Disposability
2.5.1. Unified Efficiency under Managerial Disposability and Variable DTS
2.5.2. Integrated Efficiency under Managerial Disposability and Constant DTS (UEMc)
2.5.3. Scale Efficiency in the Condition of Managerial Disposability
3. Empirical Studies
3.1. Variables and Data for Unified Efficiency
3.2. Results and Discussion
3.2.1. Unified Environmental Efficiency under Natural Disposability
3.2.2. Unified Environmental Efficiency under Managerial Disposability
3.2.3. Scale Efficiency
3.2.4. Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, J.; Liu, Y.; Chang, Y.; Zhang, L. Industrial eco-efficiency in China: A provincial quantification using three-stage data envelopment analysis. J. Clean. Prod. 2017, 143, 238–249. [Google Scholar] [CrossRef]
- Lyu, K.; Bian, Y.; Yu, A. Environmental efficiency evaluation of industrial sector in China by incorporating learning effects. J. Clean. Prod. 2018, 172, 2464–2474. [Google Scholar] [CrossRef]
- Chen, L.; Jia, G. Environmental efficiency analysis of China’s regional industry: A data envelopment analysis (DEA) based approach. J. Clean. Prod. 2017, 14, 846–853. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Lovell, C.K.; Pasurka, C. Multilateral productivity comparisons when some outputs are undesirable: A nonparametric approach. Rev. Econ. Stat. 1989, 71, 90–98. [Google Scholar] [CrossRef]
- Hu, J.L.; Wang, S.C. Total-factor energy efficiency of regions in China. Energy Policy 2006, 34, 3206–3217. [Google Scholar] [CrossRef]
- Wei, Y.M.; Liao, H.; Fan, Y. An empirical analysis of energy efficiency in China’s iron and steel sector. Energy 2007, 32, 2262–2270. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W. Linear programming models for measuring economy-wide energy efficiency performance. Energy Policy 2008, 36, 2911–2916. [Google Scholar] [CrossRef]
- Yeh, T.L.; Chen, T.Y.; Lai, P.Y. A comparative study of energy utilization efficiency between Taiwan and China. Energy Policy 2010, 38, 2386–2394. [Google Scholar] [CrossRef]
- Yang, H.; Pollitt, M. The necessity of distinguishing weak and strong disposability among undesirable outputs in DEA: Environmental performance of Chinese coalfired power plants. Energy Policy 2010, 38, 4440–4444. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Pasurka, C.A., Jr.; Weber, W.L. Substitutability among undesirable outputs. Appl. Econ. 2018, 44, 39–47. [Google Scholar]
- Sueyoshi, T.; Goto, M. Data envelopment analysis for environmental assessment: Comparison between public and private ownership in petroleum industry. Eur. J. Oper. Res. 2012, 216, 668–678. [Google Scholar] [CrossRef]
- Sueyoshi, T.; Goto, M. Environmental assessment by DEA radial measurement: U.S. coal-fired power plants in ISO (independent system operator) and RTO (regional transmission organization). Energy Econ. 2012, 34, 663–676. [Google Scholar] [CrossRef]
- Wang, K.; Lu, B.; Wei, Y.M. China’s regional energy and environmental efficiency: A Range-Adjusted Measure based analysis. Appl. Energy 2013, 112, 1403–1415. [Google Scholar] [CrossRef]
- Sueyoshi, T.; Goto, M.; Wang, D. Malmquist index measurement for sustainability enhancement in Chinese municipalities and provinces. Energy Econ. 2017, 67, 554–571. [Google Scholar] [CrossRef]
- Chen, W.; Zhou, K.; Yang, S. Evaluation of China’s electric energy efficiency under environmental constraints: A DEA cross efficiency model based on game relationship. J. Clean. Prod. 2017, 164, 38–44. [Google Scholar] [CrossRef]
- Tang, D.; Tang, J.; Xiao, Z.; Ma, T.; Bethel, B.J. Environmental regulation efficiency and total factor productivity—Effect analysis based on Chinese data from 2003 to 2013. Ecol. Indic. 2017, 73, 312–318. [Google Scholar] [CrossRef]
- Sueyoshi, T.; Yuan, Y.; Goto, M. A literature study for DEA applied to energy and environment. Energy Econ. 2017, 62, 104–124. [Google Scholar] [CrossRef]
- Sueyoshi, T.; Yuan, Y. Return to damage under undesirable congestion and damages to return under desirable congestion measured by DEA environmental assessment with multiplier restriction: Economic and energy planning for social sustainability in China. Energy Econ. 2016, 56, 288–309. [Google Scholar] [CrossRef]
- Zeng, S.; Xu, Y.; Wang, L.; Chen, J.; Li, Q. Forecasting the allocative efficiency of carbon emission allowance financial assets in China at the provincial level in 2020. Energies 2016, 9, 329. [Google Scholar] [CrossRef]
- Mardani, A.; Streimikiene, D.; Balezentis, T.; Saman, M.; Nor, K.; Khoshnava, S. Data envelopment analysis in energy and environmental economics: An overview of the state-of-the-art and recent development trends. Energies 2018, 11, 2002. [Google Scholar] [CrossRef]
- Caunii, A.; Negrea, A.; Pentea, M.; Samfira, I.; Motoc, M.; Butnariu, M. Mobility of heavy metals from soil in the two species of the aromatic plants. Rev. Chim. 2015, 66, 382–386. [Google Scholar]
- Dong, X.H.; Hu, Y.L.; Li, W.X. An international comparisons and historical analysis on China’s environmental governance efficiency based on the bode of DEA. Stud. Sci. Sci. 2008, 6, 105–114. (In Chinese) [Google Scholar]
- Bian, Y.; Yang, F. Resource and environment efficiency analysis of provinces in China: A DEA approach based on Shannon’s entropy. Energy Policy 2010, 38, 1909–1917. [Google Scholar] [CrossRef]
- Wang, K.; Yu, S.; Zhang, W. China’s regional energy and environmental efficiency: A DEA window analysis based dynamic evaluation. Math. Comput. Model. 2013, 58, 1117–1127. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, D.; Du, T.; Zhang, A.; Zhou, Y. Total-Factor energy efficiency in China’s agricultural sector: Trends, disparities and potentials. Energies 2018, 11, 853. [Google Scholar] [CrossRef]
- Chen, X.; Gong, Z. DEA Efficiency of energy consumption in China’s manufacturing sectors with environmental regulation policy constraints. Sustainability 2017, 9, 210. [Google Scholar] [CrossRef]
- Chang, Y.T.; Zhang, N.; Danao, D.; Zhang, N. Environmental efficiency analysis of transportation system in China: A non-radial DEA approach. Energy Policy 2013, 58, 277–283. [Google Scholar] [CrossRef]
Variables | Index | Unit | Mean | SD. | Min. | Max. |
---|---|---|---|---|---|---|
X1 | Employed Persons at Year-End | 10,000 persons | 608.32 | 525.83 | 50.90 | 3020.40 |
X2 | Fixed Assets | 100 million RMB | 10,244.33 | 8601.66 | 408.54 | 48,312.44 |
X3 | Total Amount of Water Use | 100 million cu.m | 199.34 | 140.62 | 22.33 | 591.30 |
X4 | Area of Built Districts | sq.km | 1418.78 | 1034.71 | 109.45 | 5633.20 |
X5 | Total Energy Consumption | 10,000 tce | 12,914.15 | 8059.82 | 920.4 | 38,899.25 |
G1 | GRP | 100 million RMB | 15,823.30 | 13,887.18 | 290.76 | 72,812.55 |
B1 | Waste Gas | 100 million cu.m | 18,120.88 | 14,198.27 | 860.00 | 79,121.30 |
B2 | Water Discharged | 10,000 tons | 75,562.22 | 63,616.99 | 5782.00 | 287,181.00 |
B3 | Solid Wastes Generated | 10,000 tons | 8641.82 | 7931.16 | 147.00 | 45,576.00 |
Provinces | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UENc | UENV | UENc | UENV | UENc | UENV | UENc | UENV | UENc | UENV | UENc | UENV | UENc | UENV | UENc | UENV | UENc | UENV | UENc | UENV | |
Beijing | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Tianjin | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Hebei | 0.738 | 0.888 | 0.755 | 0.911 | 0.755 | 0.910 | 0.658 | 0.829 | 0.779 | 1.000 | 0.762 | 1.000 | 0.704 | 1.000 | 0.679 | 1.000 | 0.651 | 1.000 | 0.641 | 0.958 |
Shanxi | 0.737 | 0.775 | 0.765 | 0.788 | 0.781 | 0.781 | 0.642 | 0.666 | 0.661 | 0.687 | 0.607 | 0.693 | 0.488 | 0.593 | 0.444 | 0.530 | 0.369 | 0.456 | 0.409 | 0.450 |
Inner Mongolia | 0.739 | 0.836 | 0.799 | 0.915 | 0.770 | 0.921 | 0.799 | 0.959 | 0.676 | 0.925 | 0.725 | 0.915 | 0.727 | 0.890 | 0.636 | 0.797 | 0.621 | 0.779 | 0.649 | 0.792 |
Liaoning | 0.477 | 0.641 | 0.482 | 0.645 | 0.501 | 0.732 | 0.519 | 0.761 | 0.536 | 0.829 | 0.550 | 0.806 | 0.519 | 0.839 | 0.523 | 0.866 | 0.503 | 0.834 | 0.734 | 0.914 |
Jilin | 0.804 | 0.816 | 0.853 | 0.867 | 0.780 | 0.787 | 0.758 | 0.758 | 0.675 | 0.676 | 0.662 | 0.666 | 0.617 | 0.631 | 0.576 | 0.590 | 0.657 | 0.661 | 0.574 | 0.578 |
Heilongjiang | 0.863 | 0.867 | 0.815 | 0.820 | 0.752 | 0.772 | 0.659 | 0.698 | 0.648 | 0.667 | 0.716 | 0.737 | 0.615 | 0.653 | 0.577 | 0.617 | 0.672 | 0.692 | 0.863 | 0.869 |
Shanghai | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Jiangsu | 0.903 | 1.000 | 0.886 | 1.000 | 0.916 | 1.000 | 0.911 | 1.000 | 0.924 | 1.000 | 0.878 | 1.000 | 0.864 | 1.000 | 0.840 | 1.000 | 0.835 | 1.000 | 0.853 | 1.000 |
Zhejiang | 0.951 | 1.000 | 0.932 | 1.000 | 0.941 | 1.000 | 0.923 | 1.000 | 0.961 | 1.000 | 0.916 | 1.000 | 0.901 | 1.000 | 0.854 | 1.000 | 0.826 | 1.000 | 0.791 | 1.000 |
Anhui | 0.604 | 0.614 | 0.507 | 0.507 | 0.519 | 0.556 | 0.532 | 0.591 | 0.531 | 0.603 | 0.527 | 0.623 | 0.507 | 0.654 | 0.478 | 0.647 | 0.514 | 0.676 | 0.512 | 0.665 |
Fujian | 1.000 | 1.000 | 0.985 | 1.000 | 0.929 | 0.947 | 0.917 | 0.932 | 0.860 | 0.927 | 0.890 | 0.918 | 0.887 | 0.933 | 0.866 | 0.948 | 0.861 | 0.944 | 0.871 | 0.949 |
Jiangxi | 0.748 | 0.775 | 0.735 | 0.757 | 0.780 | 0.800 | 0.748 | 0.762 | 0.758 | 0.758 | 0.715 | 0.719 | 0.690 | 0.694 | 0.621 | 0.644 | 0.613 | 0.636 | 0.565 | 0.591 |
Shandong | 0.923 | 1.000 | 0.845 | 1.000 | 0.839 | 1.000 | 0.831 | 1.000 | 0.782 | 1.000 | 0.733 | 1.000 | 0.713 | 1.000 | 0.663 | 1.000 | 0.654 | 1.000 | 0.631 | 1.000 |
Henan | 0.852 | 1.000 | 0.847 | 1.000 | 0.806 | 0.966 | 0.762 | 0.932 | 0.768 | 0.958 | 0.664 | 0.933 | 0.675 | 0.918 | 0.637 | 1.000 | 0.640 | 0.988 | 0.671 | 1.000 |
Hubei | 0.672 | 0.697 | 0.762 | 0.770 | 0.679 | 0.733 | 0.690 | 0.745 | 0.699 | 0.767 | 0.621 | 0.719 | 0.633 | 0.762 | 0.608 | 0.768 | 0.611 | 0.790 | 0.589 | 0.778 |
Hunan | 0.892 | 0.913 | 0.845 | 0.847 | 0.862 | 0.883 | 0.846 | 0.891 | 0.796 | 0.865 | 0.832 | 0.891 | 0.850 | 0.939 | 0.830 | 0.945 | 0.868 | 0.964 | 0.889 | 0.991 |
Guangdong | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.996 | 1.000 | 0.950 | 1.000 | 0.915 | 1.000 | 0.872 | 1.000 |
Guangxi | 0.630 | 0.653 | 0.592 | 0.608 | 0.620 | 0.628 | 0.575 | 0.579 | 0.575 | 0.593 | 0.579 | 0.603 | 0.540 | 0.579 | 0.520 | 0.581 | 0.559 | 0.615 | 0.584 | 0.644 |
Hainan | 0.973 | 1.000 | 0.996 | 1.000 | 0.838 | 1.000 | 0.914 | 1.000 | 0.933 | 1.000 | 0.715 | 1.000 | 0.680 | 1.000 | 0.662 | 1.000 | 0.603 | 1.000 | 0.585 | 1.000 |
Chongqing | 0.682 | 0.714 | 0.624 | 0.646 | 0.650 | 0.667 | 0.555 | 0.560 | 0.605 | 0.610 | 0.589 | 0.596 | 0.586 | 0.602 | 0.566 | 0.578 | 0.563 | 0.570 | 0.528 | 0.532 |
Sichuan | 0.716 | 0.725 | 0.513 | 0.597 | 0.731 | 0.750 | 0.722 | 0.763 | 0.647 | 0.723 | 0.680 | 0.808 | 0.676 | 0.878 | 0.661 | 0.876 | 0.666 | 0.892 | 0.672 | 0.838 |
Guizhou | 0.622 | 0.746 | 0.692 | 0.813 | 0.722 | 0.835 | 0.631 | 0.758 | 0.589 | 0.685 | 0.541 | 0.602 | 0.476 | 0.542 | 0.460 | 0.526 | 0.434 | 0.468 | 0.496 | 0.534 |
Yunnan | 0.649 | 0.672 | 0.589 | 0.631 | 0.614 | 0.644 | 0.576 | 0.603 | 0.533 | 0.534 | 0.480 | 0.498 | 0.533 | 0.554 | 0.525 | 0.528 | 0.516 | 0.526 | 0.497 | 0.501 |
Shaanxi | 0.056 | 0.181 | 0.054 | 0.172 | 0.031 | 0.139 | 0.029 | 0.143 | 0.025 | 0.127 | 0.023 | 0.167 | 0.019 | 0.196 | 0.022 | 0.251 | 0.022 | 0.220 | 0.021 | 0.182 |
Gansu | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Qinghai | 0.459 | 1.000 | 0.474 | 1.000 | 0.531 | 1.000 | 0.469 | 1.000 | 0.576 | 1.000 | 0.599 | 1.000 | 0.632 | 1.000 | 0.447 | 1.000 | 0.452 | 1.000 | 0.443 | 1.000 |
Ningxia | 0.317 | 1.000 | 0.229 | 0.926 | 0.322 | 1.000 | 0.274 | 0.749 | 0.205 | 0.563 | 0.206 | 0.898 | 0.232 | 1.000 | 0.255 | 1.000 | 0.264 | 1.000 | 0.238 | 1.000 |
Xinjiang | 0.699 | 0.717 | 0.622 | 0.665 | 0.605 | 0.633 | 0.545 | 0.580 | 0.525 | 0.543 | 0.583 | 0.614 | 0.458 | 0.496 | 0.409 | 0.434 | 0.447 | 0.474 | 0.461 | 0.500 |
Provinces | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UEMc | UEMV | UEMc | UEMV | UEMc | UEMV | UEMc | UEMV | UEMc | UEMV | UEMc | UEMV | UEMc | UEMV | UEMc | UEMV | UEMc | UEMV | UEMc | UEMV | |
Beijing | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Tianjin | 0.723 | 0.739 | 0.725 | 0.742 | 0.695 | 0.696 | 0.808 | 0.853 | 0.743 | 0.982 | 0.814 | 1.000 | 0.787 | 1.000 | 0.876 | 1.000 | 0.894 | 1.000 | 0.747 | 1.000 |
Hebei | 0.423 | 0.820 | 0.397 | 0.956 | 0.448 | 0.997 | 0.341 | 1.000 | 0.343 | 1.000 | 0.320 | 1.000 | 0.326 | 0.944 | 0.389 | 1.000 | 0.370 | 1.000 | 0.413 | 1.000 |
Shanxi | 0.607 | 1.000 | 0.595 | 1.000 | 0.504 | 1.000 | 0.520 | 0.970 | 0.397 | 0.862 | 0.570 | 0.979 | 0.515 | 0.759 | 0.583 | 1.000 | 0.542 | 1.000 | 0.614 | 1.000 |
Inner Mongolia | 0.781 | 1.000 | 1.000 | 1.000 | 0.732 | 1.000 | 0.811 | 1.000 | 0.579 | 1.000 | 0.665 | 1.000 | 0.823 | 1.000 | 0.746 | 1.000 | 0.678 | 1.000 | 0.730 | 1.000 |
Liaoning | 0.418 | 0.708 | 0.549 | 0.832 | 0.305 | 1.000 | 0.515 | 1.000 | 0.541 | 1.000 | 0.507 | 1.000 | 0.383 | 1.000 | 0.464 | 1.000 | 0.374 | 0.883 | 0.353 | 0.875 |
Jilin | 0.775 | 0.782 | 0.935 | 0.936 | 0.993 | 1.000 | 0.934 | 0.987 | 0.887 | 1.000 | 0.688 | 0.809 | 0.617 | 0.851 | 0.667 | 0.778 | 0.790 | 0.796 | 0.701 | 0.736 |
Heilongjiang | 1.000 | 1.000 | 1.000 | 1.000 | 0.958 | 1.000 | 0.806 | 1.000 | 0.955 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Shanghai | 0.876 | 1.000 | 0.847 | 1.000 | 0.804 | 1.000 | 0.833 | 1.000 | 0.792 | 1.000 | 0.855 | 0.933 | 0.887 | 0.925 | 1.000 | 1.000 | 0.964 | 0.981 | 0.768 | 0.891 |
Jiangsu | 0.675 | 1.000 | 0.895 | 1.000 | 0.803 | 1.000 | 0.795 | 1.000 | 0.770 | 1.000 | 0.677 | 1.000 | 0.651 | 1.000 | 0.794 | 1.000 | 0.714 | 1.000 | 0.585 | 1.000 |
Zhejiang | 0.918 | 1.000 | 0.850 | 0.993 | 0.830 | 1.000 | 0.803 | 0.977 | 0.750 | 1.000 | 0.800 | 1.000 | 0.749 | 1.000 | 0.796 | 1.000 | 0.815 | 1.000 | 0.612 | 1.000 |
Anhui | 0.729 | 0.833 | 0.617 | 0.740 | 0.579 | 0.939 | 0.687 | 0.999 | 0.638 | 1.000 | 0.457 | 1.000 | 0.455 | 0.982 | 0.520 | 0.962 | 0.540 | 0.973 | 0.521 | 0.955 |
Fujian | 0.746 | 0.750 | 0.759 | 0.768 | 0.761 | 0.838 | 0.703 | 0.793 | 0.659 | 0.749 | 0.689 | 0.941 | 0.601 | 0.876 | 0.623 | 0.874 | 0.697 | 0.897 | 0.704 | 0.933 |
Jiangxi | 0.922 | 0.923 | 0.968 | 0.968 | 0.901 | 0.960 | 0.962 | 1.000 | 0.891 | 1.000 | 0.622 | 0.786 | 0.603 | 0.781 | 0.631 | 0.744 | 0.759 | 0.800 | 0.650 | 0.652 |
Shandong | 0.748 | 1.000 | 0.736 | 1.000 | 0.646 | 1.000 | 0.679 | 1.000 | 0.550 | 1.000 | 0.519 | 1.000 | 0.399 | 1.000 | 0.427 | 1.000 | 0.420 | 1.000 | 0.417 | 1.000 |
Henan | 0.662 | 0.809 | 0.736 | 0.888 | 0.655 | 0.964 | 0.639 | 1.000 | 0.692 | 1.000 | 0.416 | 0.844 | 0.383 | 0.840 | 0.413 | 0.856 | 0.425 | 0.902 | 0.499 | 0.960 |
Hubei | 0.697 | 0.779 | 0.902 | 0.909 | 0.805 | 0.892 | 0.799 | 0.921 | 0.858 | 1.000 | 0.603 | 0.877 | 0.654 | 1.000 | 0.683 | 1.000 | 0.731 | 1.000 | 0.683 | 1.000 |
Hunan | 1.000 | 1.000 | 1.000 | 1.000 | 0.986 | 1.000 | 0.905 | 1.000 | 0.819 | 0.936 | 0.793 | 1.000 | 1.000 | 1.000 | 0.779 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Guangdong | 1.000 | 1.000 | 1.000 | 1.000 | 0.972 | 1.000 | 0.951 | 1.000 | 0.927 | 1.000 | 1.000 | 1.000 | 0.948 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.873 | 1.000 |
Guangxi | 0.556 | 0.560 | 0.491 | 0.495 | 0.550 | 0.575 | 0.550 | 0.595 | 0.597 | 0.685 | 0.415 | 0.514 | 0.443 | 0.557 | 0.626 | 0.650 | 0.684 | 0.701 | 0.730 | 0.758 |
Hainan | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Chongqing | 0.565 | 0.580 | 0.619 | 0.632 | 0.657 | 0.667 | 0.487 | 0.604 | 0.559 | 0.648 | 0.747 | 0.945 | 0.629 | 0.941 | 0.634 | 0.915 | 0.716 | 0.990 | 0.718 | 1.000 |
Sichuan | 0.783 | 0.892 | 0.489 | 0.699 | 0.821 | 0.987 | 0.897 | 1.000 | 0.660 | 0.975 | 0.632 | 1.000 | 0.550 | 1.000 | 0.655 | 1.000 | 0.726 | 1.000 | 0.888 | 1.000 |
Guizhou | 0.861 | 0.882 | 0.935 | 0.959 | 0.949 | 1.000 | 0.873 | 0.914 | 0.816 | 0.946 | 0.633 | 0.808 | 0.590 | 0.698 | 0.628 | 0.712 | 0.432 | 0.571 | 0.492 | 0.679 |
Yunnan | 0.724 | 0.728 | 0.699 | 0.702 | 0.654 | 0.661 | 0.613 | 0.664 | 0.609 | 0.646 | 0.422 | 0.486 | 0.442 | 0.571 | 0.475 | 0.589 | 0.505 | 0.641 | 0.524 | 0.639 |
Shaanxi | 0.765 | 0.773 | 0.825 | 0.839 | 0.569 | 0.595 | 0.569 | 0.635 | 0.531 | 0.690 | 0.538 | 0.939 | 0.493 | 1.000 | 0.604 | 1.000 | 0.630 | 1.000 | 0.590 | 1.000 |
Gansu | 0.805 | 0.807 | 0.765 | 0.769 | 0.763 | 0.767 | 0.741 | 0.743 | 0.843 | 0.844 | 0.666 | 0.769 | 0.698 | 0.808 | 0.716 | 0.818 | 0.706 | 0.829 | 0.682 | 0.790 |
Qinghai | 0.695 | 1.000 | 0.677 | 0.901 | 0.509 | 0.918 | 0.495 | 0.878 | 0.477 | 0.698 | 0.513 | 0.847 | 0.536 | 0.902 | 0.661 | 0.937 | 0.666 | 1.000 | 0.641 | 0.915 |
Ningxia | 0.731 | 0.732 | 0.634 | 0.666 | 0.592 | 0.598 | 0.556 | 0.577 | 0.338 | 0.357 | 0.369 | 0.468 | 0.430 | 0.565 | 0.518 | 0.617 | 0.511 | 0.652 | 0.470 | 0.560 |
Xinjiang | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
SEN | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
---|---|---|---|---|---|---|---|---|---|---|
Beijing | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Tianjin | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Hebei | 0.831 | 0.829 | 0.830 | 0.794 | 0.779 | 0.762 | 0.704 | 0.679 | 0.651 | 0.669 |
Shanxi | 0.951 | 0.971 | 0.999 | 0.963 | 0.962 | 0.875 | 0.823 | 0.838 | 0.809 | 0.908 |
Inner Mongolia | 0.884 | 0.873 | 0.836 | 0.833 | 0.731 | 0.792 | 0.817 | 0.799 | 0.797 | 0.819 |
Liaoning | 0.744 | 0.747 | 0.685 | 0.683 | 0.646 | 0.682 | 0.619 | 0.604 | 0.603 | 0.803 |
Jilin | 0.986 | 0.985 | 0.991 | 0.999 | 0.998 | 0.994 | 0.977 | 0.976 | 0.993 | 0.994 |
Heilongjiang | 0.995 | 0.995 | 0.975 | 0.943 | 0.971 | 0.971 | 0.942 | 0.934 | 0.971 | 0.993 |
Shanghai | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Jiangsu | 0.903 | 0.886 | 0.916 | 0.911 | 0.924 | 0.878 | 0.864 | 0.840 | 0.835 | 0.853 |
Zhejiang | 0.951 | 0.932 | 0.941 | 0.923 | 0.961 | 0.916 | 0.901 | 0.854 | 0.826 | 0.791 |
Anhui | 0.985 | 1.000 | 0.934 | 0.900 | 0.881 | 0.847 | 0.775 | 0.739 | 0.760 | 0.771 |
Fujian | 1.000 | 0.985 | 0.981 | 0.983 | 0.928 | 0.969 | 0.951 | 0.913 | 0.912 | 0.918 |
Jiangxi | 0.965 | 0.971 | 0.975 | 0.981 | 0.999 | 0.995 | 0.994 | 0.963 | 0.963 | 0.957 |
Shandong | 0.923 | 0.845 | 0.839 | 0.831 | 0.782 | 0.733 | 0.713 | 0.663 | 0.654 | 0.631 |
Henan | 0.852 | 0.847 | 0.834 | 0.818 | 0.802 | 0.711 | 0.735 | 0.637 | 0.648 | 0.671 |
Hubei | 0.965 | 0.990 | 0.927 | 0.927 | 0.910 | 0.863 | 0.831 | 0.791 | 0.773 | 0.757 |
Hunan | 0.977 | 0.997 | 0.976 | 0.949 | 0.921 | 0.935 | 0.905 | 0.877 | 0.901 | 0.897 |
Guangdong | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.996 | 0.950 | 0.915 | 0.872 |
Guangxi | 0.965 | 0.974 | 0.988 | 0.994 | 0.969 | 0.960 | 0.932 | 0.895 | 0.909 | 0.906 |
Hainan | 0.973 | 0.996 | 0.838 | 0.914 | 0.933 | 0.715 | 0.680 | 0.662 | 0.603 | 0.585 |
Chongqing | 0.955 | 0.967 | 0.974 | 0.992 | 0.992 | 0.989 | 0.973 | 0.980 | 0.987 | 0.993 |
Sichuan | 0.988 | 0.860 | 0.974 | 0.947 | 0.895 | 0.842 | 0.770 | 0.755 | 0.746 | 0.802 |
Guizhou | 0.833 | 0.851 | 0.864 | 0.833 | 0.861 | 0.899 | 0.878 | 0.875 | 0.928 | 0.929 |
Yunnan | 0.965 | 0.933 | 0.953 | 0.955 | 0.998 | 0.963 | 0.963 | 0.995 | 0.980 | 0.991 |
Shaanxi | 0.310 | 0.311 | 0.224 | 0.200 | 0.196 | 0.137 | 0.096 | 0.088 | 0.098 | 0.115 |
Gansu | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Qinghai | 0.459 | 0.474 | 0.531 | 0.469 | 0.576 | 0.599 | 0.632 | 0.447 | 0.452 | 0.443 |
Ningxia | 0.317 | 0.247 | 0.322 | 0.366 | 0.365 | 0.229 | 0.232 | 0.255 | 0.264 | 0.238 |
Xinjiang | 0.974 | 0.936 | 0.956 | 0.940 | 0.966 | 0.949 | 0.923 | 0.943 | 0.945 | 0.922 |
SEM | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
---|---|---|---|---|---|---|---|---|---|---|
Beijing | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Tianjin | 0.978 | 0.978 | 0.999 | 0.947 | 0.756 | 0.814 | 0.787 | 0.876 | 0.894 | 0.747 |
Hebei | 0.516 | 0.415 | 0.450 | 0.341 | 0.343 | 0.320 | 0.345 | 0.389 | 0.370 | 0.413 |
Shanxi | 0.607 | 0.595 | 0.504 | 0.536 | 0.460 | 0.582 | 0.678 | 0.583 | 0.542 | 0.614 |
Inner Mongolia | 0.781 | 1.000 | 0.732 | 0.811 | 0.579 | 0.665 | 0.823 | 0.746 | 0.678 | 0.730 |
Liaoning | 0.591 | 0.659 | 0.305 | 0.515 | 0.541 | 0.507 | 0.383 | 0.464 | 0.424 | 0.403 |
Jilin | 0.991 | 0.999 | 0.993 | 0.946 | 0.887 | 0.851 | 0.726 | 0.857 | 0.992 | 0.952 |
Heilongjiang | 1.000 | 1.000 | 0.958 | 0.806 | 0.955 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Shanghai | 0.876 | 0.847 | 0.804 | 0.833 | 0.792 | 0.916 | 0.958 | 1.000 | 0.983 | 0.862 |
Jiangsu | 0.675 | 0.895 | 0.803 | 0.795 | 0.770 | 0.677 | 0.651 | 0.794 | 0.714 | 0.585 |
Zhejiang | 0.918 | 0.856 | 0.830 | 0.822 | 0.750 | 0.800 | 0.749 | 0.796 | 0.815 | 0.612 |
Anhui | 0.874 | 0.834 | 0.616 | 0.688 | 0.638 | 0.457 | 0.463 | 0.541 | 0.555 | 0.545 |
Fujian | 0.995 | 0.989 | 0.908 | 0.887 | 0.880 | 0.733 | 0.686 | 0.713 | 0.777 | 0.755 |
Jiangxi | 0.999 | 1.000 | 0.938 | 0.962 | 0.891 | 0.792 | 0.772 | 0.848 | 0.949 | 0.998 |
Shandong | 0.748 | 0.736 | 0.646 | 0.679 | 0.550 | 0.519 | 0.399 | 0.427 | 0.420 | 0.417 |
Henan | 0.817 | 0.829 | 0.680 | 0.639 | 0.692 | 0.493 | 0.456 | 0.483 | 0.471 | 0.519 |
Hubei | 0.895 | 0.992 | 0.902 | 0.868 | 0.858 | 0.688 | 0.654 | 0.683 | 0.731 | 0.683 |
Hunan | 1.000 | 1.000 | 0.986 | 0.905 | 0.875 | 0.793 | 1.000 | 0.779 | 1.000 | 1.000 |
Guangdong | 1.000 | 1.000 | 0.972 | 0.951 | 0.927 | 1.000 | 0.948 | 1.000 | 1.000 | 0.873 |
Guangxi | 0.993 | 0.991 | 0.956 | 0.926 | 0.871 | 0.808 | 0.794 | 0.962 | 0.976 | 0.964 |
Hainan | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Chongqing | 0.975 | 0.979 | 0.985 | 0.807 | 0.864 | 0.791 | 0.669 | 0.693 | 0.723 | 0.718 |
Sichuan | 0.878 | 0.700 | 0.831 | 0.897 | 0.677 | 0.632 | 0.550 | 0.655 | 0.726 | 0.888 |
Guizhou | 0.977 | 0.975 | 0.949 | 0.955 | 0.863 | 0.784 | 0.845 | 0.881 | 0.756 | 0.724 |
Yunnan | 0.994 | 0.995 | 0.991 | 0.924 | 0.943 | 0.870 | 0.774 | 0.806 | 0.789 | 0.821 |
Shaanxi | 0.989 | 0.984 | 0.957 | 0.895 | 0.770 | 0.573 | 0.493 | 0.604 | 0.630 | 0.590 |
Gansu | 0.997 | 0.995 | 0.994 | 0.997 | 0.999 | 0.866 | 0.863 | 0.876 | 0.852 | 0.863 |
Qinghai | 0.695 | 0.752 | 0.555 | 0.564 | 0.684 | 0.605 | 0.594 | 0.706 | 0.666 | 0.701 |
Ningxia | 0.998 | 0.952 | 0.990 | 0.964 | 0.947 | 0.789 | 0.761 | 0.840 | 0.784 | 0.839 |
Xinjiang | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Chen, H.; Wang, H.; Lev, B.; Quan, L. Natural and Managerial Disposability Based DEA Model for China’s Regional Environmental Efficiency Assessment. Energies 2019, 12, 3436. https://doi.org/10.3390/en12183436
Zhou X, Chen H, Wang H, Lev B, Quan L. Natural and Managerial Disposability Based DEA Model for China’s Regional Environmental Efficiency Assessment. Energies. 2019; 12(18):3436. https://doi.org/10.3390/en12183436
Chicago/Turabian StyleZhou, Xiaoyang, Hao Chen, Hao Wang, Benjamin Lev, and Lifang Quan. 2019. "Natural and Managerial Disposability Based DEA Model for China’s Regional Environmental Efficiency Assessment" Energies 12, no. 18: 3436. https://doi.org/10.3390/en12183436
APA StyleZhou, X., Chen, H., Wang, H., Lev, B., & Quan, L. (2019). Natural and Managerial Disposability Based DEA Model for China’s Regional Environmental Efficiency Assessment. Energies, 12(18), 3436. https://doi.org/10.3390/en12183436