# Weighting Factor Selection of the Ensemble Model for Improving Forecast Accuracy of Photovoltaic Generating Resources

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Power Output Forecasting Model of Photovoltaic Generating Resources

#### 2.1. NBC Model

#### 2.2. SVR Model

#### 2.3. Hourly Regression Model

## 3. Forecasting Simulation of Photovoltaic Power Using Empirical Data

## 4. Enhancement of Photovoltaic Power Forecasting through Ensemble

## 5. Conclusions

## Author Contributions

## Acknowledgments

## Conflicts of Interest

## Symbols

NBC | Naïve Bayes Classifier |

NMAE | Normalized Mean Absolute Error |

ARMA | Auto Regressive Moving Average |

k-NN | k-Nearest Neighbors |

NWP | Numerical Weather Prediction |

RBF | Radial basis function |

MAE | Mean Absolute Error |

SVR | Support Vector Regression |

AR | Auto-regressive |

ANN | Artificial Neural Network |

AI | Artificial Intelligence |

SVM | Support Vector Machine |

RMSE | Root Mean Square Error |

## References

- International Renewable Energy Agency. Renewable Capacity Highlights 2018. Available online: https://www.irena.org/media/Files/IRENA/Agency/Publication/2018/Mar/RE_capacity_highlights_2018.pdf (accessed on 1 August 2019).
- Korea Energy Corporation’s Renewable Energy Center. Renewable Energy Supply Statistics 2017. Available online: http://www.index.go.kr/potal/main/EachDtlPageDetail.do?idx_cd=1171 (accessed on 1 August 2019).
- Ela, E.; Diakov, V.; Ibanez, E.; Heaney, M. Impacts of Variability and Uncertainty in Solar Photovoltaic Generation at Multiple Timescales (NREL/TP-5500-58274); National Renewable Energy Lab (NREL): Golden, CO, USA, 2013.
- Lew, D.; Milligan, M.; Jordan, G.; Piwko, R. Value of Wind Power Forecasting (No. NREL/CP-5500-50814); National Renewable Energy Lab (NREL): Golden, CO, USA, 2011.
- Monteiro, C.; Santos, T.; Fernandez-Jimenez, L.; Ramirez-Rosado, I.; Terreros-Olarte, M. Short-term power forecasting model for photovoltaic plants based on historical similarity. Energies
**2013**, 6, 2624–2643. [Google Scholar] [CrossRef] - Lorenz, E.; Hurka, J.; Karampela, G.; Heinemann, D.; Beyer, H.; Schneider, M. Qualified Forecast of ensemble power production by spatially dispersed grid-connected PV systems. In Proceedings of the 23rd European Photovoltaic Solar Energy Conference and Exhibition, Valencia, Spain, 1–5 September 2008; pp. 3285–3291. [Google Scholar] [CrossRef]
- Huang, R.; Huang, T.; Gadh, R.; Li, N. Solar generation prediction using the ARMA model in a laboratory-level micro-grid. In Proceedings of the IEEE 3rd International Conference on Smart Grid Communications on Smart Grid Communications, Tainan, China, 5–8 November 2012; pp. 528–533. [Google Scholar] [CrossRef]
- David, M.; Ramahatana, F.; Trombe, P.J.; Lauret, P. Probabilistic forecasting of the solar irradiance with recursive ARMA and GARCH models. Sol. Energy
**2016**, 133, 55–72. [Google Scholar] [CrossRef][Green Version] - Yang, D.; Jirutitijaroen, P.; Walsh, W.M. Hourly solar irradiance time series forecasting using cloud cover index. Sol. Energy
**2012**, 86, 3531–3543. [Google Scholar] [CrossRef] - Wang, F.; Mi, Z.; Su, S.; Zhao, H. Short-term solar irradiance forecasting model based on artificial neural network using statistical feature parameters. Energies
**2012**, 5, 1355–1370. [Google Scholar] [CrossRef] - Sözen, A.; Arcaklioǧlu, E.; Özalp, M.; Çaǧlar, N. Forecasting based on neural network approach of solar potential in Turkey. Renew. Energy
**2005**, 30, 1075–1090. [Google Scholar] [CrossRef] - Ashraf, I.; Chandra, A. Artificial neural network based models for forecasting electricity generation of grid connected solar PV power plant. Int. J. Glob. Energy Issues
**2004**, 21, 119–130. [Google Scholar] [CrossRef] - Pedro, H.T.C.; Coimbra, C.F.M. Assessment of forecasting techniques for solar power production with no exogenous inputs. Sol. Energy
**2012**, 86, 2017–2028. [Google Scholar] [CrossRef] - Marquez, R.; Pedro, H.T.C.; Coimbra, C.F.M. Hybrid solar forecasting method uses satellite imaging and ground telemetry as inputs to ANNs. Sol. Energy
**2013**, 92, 176–188. [Google Scholar] [CrossRef] - Wan, C.; Zhao, J.; Song, Y.; Xu, Z.; Lin, J.; Hu, Z. Photovoltaic and solar power forecasting for smart grid energy management. CSEE J. Power Energy Syst.
**2015**, 1, 38–46. [Google Scholar] [CrossRef] - Abedinia, O.; Amjady, N.; Ghadimi, N. Solar energy forecasting based on hybrid neural network and improved metaheuristic algorithm. Comput. Intell.
**2018**, 34, 241–260. [Google Scholar] [CrossRef] - Antonanzas, J.; Osorio, N.; Escobar, R.; Urraca, R.; Martinez-de-Pison, F.J.; Antonanzas-Torres, F. Review of photovoltaic power forecasting. Sol. Energy
**2016**, 136, 78–111. [Google Scholar] [CrossRef] - Ahlstrom, M.; Bartlett, D.; Collier, C.; Duchesne, J.; Edelson, D.; Gesino, A.; De La Torre Rodríguez, M. Knowledge is power: Efficiently integrating wind energy and wind forecasts. IEEE Power Energy Mag.
**2013**, 11, 45–52. [Google Scholar] [CrossRef] - Widiss, R.; Porter, K. A Review of Variable Generation Forecasting in the West. Available online: https://www.nrel.gov/docs/fy14osti/61035.pdf (accessed on 1 August 2019).
- Bracale, A.; Caramia, P.; Carpinelli, G.; Fazio, A.R.D.; Ferruzzi, G. A Bayesian Method for Short-Term Probabilistic Forecasting of Photovoltaic Generation in Smart Grid Operation and Control. Energies
**2013**, 6, 733–747. [Google Scholar] [CrossRef][Green Version] - Visscher, R.D.; Delouille, V.; Dupont, P.; Deledalle, C.A. Supervised classification of solar features using prior information. J. Space Weather Space Clim.
**2015**, 5. [Google Scholar] [CrossRef] - Quek, Y.T.; Woo, W.L.; Logenthiran, T. A naïve Bayes Classification Approach for Short-Term Forecast of Photovoltaic System. In Proceedings of the 6th Annual International Conference on Sustainable Energy and Environmental Sciences (SEES 2017), Singapore, 6–7 May 2017. [Google Scholar]
- Davig, T.; Hall, A.S. Recession forecasting using Bayesian classification. Int. J. Forecast.
**2019**, 35, 848–867. [Google Scholar] [CrossRef][Green Version] - Raschka, S. Naïve Bayes and Text Classification 1–Introduction and Theory. 2014. Available online: https://arxiv.org/abs/1410.5329 (accessed on 1 August 2019).
- Nam, S.; Hur, J. Probabilistic Forecasting Model of Solar Power Outputs Based on the Naïve Bayes Classifier and Kriging Models. Energies
**2018**, 11. [Google Scholar] [CrossRef] - Kim, S.B.; Han, K.S.; Rim, H.C.; Myaeng, S.H. Some Effective Techniques for Naïve Bayes Text Classification. IEEE Trans. Knowl. Data Eng.
**2006**, 18, 1457–1466. [Google Scholar] [CrossRef] - Gayathri, A.; Revathi, M.; Velmurugan, J. A survey on Weather forecasting by Data Mining. Int. J. Adv. Res. Comput. Commun. Eng.
**2016**, 5, 298–300. [Google Scholar] [CrossRef] - Bhargavi, P.; Jyothi, S. Applying Naive Bayes Data Mining Technique for Classification of Agricultural Land Soils. Int. J. Comput. Sci. Netw. Secur.
**2009**, 9, 117–122. [Google Scholar] - Hearst, M.A.; Dumais, S.T.; Osuna, E.; Platt, J.; Scholkopf, B. Support vector machines. IEEE Intell. Syst. Appl.
**1998**, 13, 18–28. [Google Scholar] [CrossRef][Green Version] - Lu, C.J.; Lee, T.S.; Chiu, C.C. Financial time series forecasting using independent component analysis and support vector regression. Decis. Support Syst.
**2009**, 47, 115–125. [Google Scholar] [CrossRef] - Smola, A.J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput.
**2004**. [Google Scholar] [CrossRef] - Drucker, H.; Surges, C.J.C.; Kaufman, L.; Smola, A.; Vapnik, V. Support vector regression machines. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 1998; pp. 155–161. [Google Scholar]
- Basak, D.; Pal, S.; Patranabis, D.C. Support vector regression. Neural Inf. Process. Lett. Rev.
**2007**, 11, 203–224. [Google Scholar] - Das, U.; Tey, K.; Seyedmahmoudian, M.; Idna Idris, M.; Mekhilef, S.; Horan, B.; Stojcevski, A. SVR-based model to forecast PV power generation under different weather conditions. Energies
**2017**, 10. [Google Scholar] [CrossRef] - Samanta, M.J.; Srikanth, B.K.; Yerrapragada, J.B. Short-Term Power Forecasting of Solar PV Systems Using Machine Learning Techniques. Available online: https://pdfs.semanticscholar.org/c1e5/7d5b888d8347dfc831c255bd1f374ee397a6.pdf (accessed on 1 August 2019).
- Dolara, A.; Grimaccia, F.; Leva, S.; Mussetta, M. Comparison of training approaches for photovoltaic forecasts by means of machine learning. Appl. Sci.
**2018**, 8. [Google Scholar] [CrossRef]

Month | NBC Model (%) | SVR Model (%) | Hourly Regression Model (%) |
---|---|---|---|

January | 12.19 | 5.71 | 11.52 |

February | 9.50 | 5.99 | 13.62 |

March | 10.08 | 6.61 | 15.60 |

April | 8.28 | 5.73 | 11.73 |

May | 5.90 | 16.60 | 11.18 |

June | 5.83 | 4.43 | 9.46 |

July | 5.08 | 5.57 | 9.98 |

August | 6.09 | 7.74 | 13.13 |

September | 9.57 | 5.66 | 10.41 |

October | 9.56 | 5.82 | 10.48 |

November | 9.10 | 6.93 | 12.61 |

December | 8.03 | 5.13 | 11.29 |

Month | Mean (%) | Propose Method (%) |
---|---|---|

January | 7.31 | 6.50 |

February | 8.80 | 7.27 |

March | 9.97 | 8.69 |

April | 6.62 | 6.58 |

May | 8.02 | 7.00 |

June | 4.93 | 4.69 |

July | 5.42 | 5.25 |

August | 7.12 | 7.00 |

September | 5.23 | 5.08 |

October | 6.75 | 6.57 |

November | 7.75 | 7.48 |

December | 6.63 | 6.19 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kim, K.; Hur, J. Weighting Factor Selection of the Ensemble Model for Improving Forecast Accuracy of Photovoltaic Generating Resources. *Energies* **2019**, *12*, 3315.
https://doi.org/10.3390/en12173315

**AMA Style**

Kim K, Hur J. Weighting Factor Selection of the Ensemble Model for Improving Forecast Accuracy of Photovoltaic Generating Resources. *Energies*. 2019; 12(17):3315.
https://doi.org/10.3390/en12173315

**Chicago/Turabian Style**

Kim, Kihan, and Jin Hur. 2019. "Weighting Factor Selection of the Ensemble Model for Improving Forecast Accuracy of Photovoltaic Generating Resources" *Energies* 12, no. 17: 3315.
https://doi.org/10.3390/en12173315