Magnetic Resonance Imaging of Methane Hydrate Formation and Dissociation in Sandstone with Dual Water Saturation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Set-Up
2.2. Experimental Procedure
3. Results and Discussions
3.1. Intensity vs. Water Saturation
3.2. Methane Hydrate Growth
3.3. Methane Hydrate Dissociation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Milkov, A.V. Global Estimates of Hydrate-Bound Gas in Marine Sediments: How Much Is Really Out There? Earth-Sci. Rev. 2004, 66, 183–197. [Google Scholar] [CrossRef]
- Ruppel, C.D.; Kessler, J.D. The Interaction of Climate Change and Methane Hydrates. Rev. Geophys. 2017, 55, 126–168. [Google Scholar]
- Kurihara, M.; Sato, A.; Funatsu, K.; Ouchi, H.; Yamamoto, K.; Numasawa, M.; Ebinuma, K.; Narita, H.; Masuda, Y.; Dallimore, S.; et al. Analysis of Production Data for 2007/2008 Mallik Gas Hydrate Production Tests in Canada. In Proceedings of the International Oil and Gas Conference and Exhibition, Beijing, China, 8–10 June 2010. [Google Scholar]
- Konno, Y.; Fujii, T.; Sato, A.; Akamine, K.; Naiki, M.; Masuda, Y.; Yamamoto, K.; Nagao, J. Key Findings of the World’s First Offshore Methane Hydrate Production Test off the Coast of Japan: Toward Future Commercial Production. Energy Fuels 2017, 31, 2607–2616. [Google Scholar] [CrossRef]
- Schoderbek, D.; Martin, K.L.; Howard, J.J.; Silpngarmlert, S.; Hester, K. North Slope Hydrate Fieldtrial: CO2/CH4 Exchange. In Proceedings of the OTC Arctic Technology Conference, Houston, TX, USA, 3–5 December 2012. [Google Scholar]
- Almenningen, S.; Fotland, P.; Fernø, M.A.; Ersland, G. An Experimental Investigation of Gas-Production Rates During Depressurization of Sedimentary Methane Hydrates. SPE J. 2019, 24, 522–530. [Google Scholar] [CrossRef]
- Kleinhans, M.G.; Jeukens, C.R.L.P.N.; Bakker, C.J.G.; Frings, R.M. Magnetic Resonance Imaging of Coarse Sediment. Sediment. Geol. 2008, 208, 69–78. [Google Scholar] [CrossRef]
- Ersland, G.; Husebø, J.; Graue, A.; Baldwin, B.A.; Howard, J.J.; Stevens, J. Measuring Gas Hydrate Formation and Exchange with CO2 in Bentheim Sandstone Using MRI Tomography. Chem. Eng. J. 2010, 158, 25–31. [Google Scholar] [CrossRef]
- Fernø, M.A.; Haugen, Å.; Wickramathilaka, S.; Howard, J.J.; Graue, A.; Mason, G.; Morrow, N.R. Magnetic Resonance Imaging of the Development of Fronts During Spontaneous Imbibition. J. Petrol. Sci. Eng. 2013, 101, 1–11. [Google Scholar]
- Oswald, S.E.; Spiegel, M.A.; Kinzelbach, W. Three-Dimensional Saltwater-Freshwater Fingering in Porous Media: Contrast Agent MRI as Basis for Numerical Simulations. Magn. Reson. Imaging 2007, 25, 537–540. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Lv, Q.; Li, Y.; Yang, M.; Liu, W.; Yao, L.; Wang, S.; Zhang, Y.; Song, Y. In-Situ Visual Observation for the Formation and Dissociation of Methane Hydrates in Porous Media by Magnetic Resonance Imaging. Magn. Reson. Imaging 2015, 33, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, B.A.; Moradi-Araghi, A.; Stevens, J. Monitoring Hydrate Formation and Dissociation in Sandstone and Bulk with Magnetic Resonance Imaging. Magn. Reson. Imaging 2003, 21, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, B.A.; Stevens, J.; Howard, J.J.; Graue, A.; Kvamme, B.; Aspenes, E.; Ersland, G.; Husebø, J.; Zornesb, D.R. Using Magnetic Resonance Imaging to Monitor CH4 Hydrate Formation and Spontaneous Conversion of CH4 Hydrate to CO2 Hydrate in Porous Media. Magn. Reson. Imaging 2009, 27, 720–726. [Google Scholar] [CrossRef] [PubMed]
- Graue, A.; Kvamme, B.; Baldwin, B.; Stevens, J.; Howard, J.J.; Aspenes, E.; Ersland, G.; Husebo, J.; Zornes, D. MRI Visualization of Spontaneous Methane Production From Hydrates in Sandstone Core Plugs When Exposed to CO2. SPE J. 2008, 13, 146–152. [Google Scholar] [CrossRef]
- Ramstad, T.; Rueslåtten, H. Pore Scale Numerical Analysis for Geological Sequestration of CO2; Technical Report from Task 1, 1–63; Numerical Rocks: Trondheim, Norway, 2013. [Google Scholar]
- Mitchell, J.; Chandrasekera, T.C.; Johns, M.L.; Gladden, L.F.; Fordham, E.J. Nuclear Magnetic Resonance Relaxation and Diffusion in the Presence of Internal Gradients: The Effect of Magnetic Field Strength. Phys. Rev. E 2010, 81, 026101. [Google Scholar] [CrossRef] [PubMed]
- Almenningen, S.; Flatlandsmo, J.; Fernø, M.A.; Ersland, G. Multiscale Laboratory Verification of Depressurization for Production of Sedimentary Methane Hydrates. SPE J. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Circone, S.; Kirby, S.H.; Stern, L.A. Direct Measurement of Methane Hydrate Composition along the Hydrate Equilibrium Boundary. J. Phys. Chem. B 2005, 109, 9468–9475. [Google Scholar] [CrossRef] [PubMed]
- Bagherzadeh, S.A.; Moudrakovski, I.L.; Ripmeester, J.A.; Englezos, P. Magnetic Resonance Imaging of Gas Hydrate Formation in a Bed of Silica Sand Particles. Energy Fuels 2011, 25, 3083–3092. [Google Scholar] [CrossRef]
- Seol, Y.; Kneafsey, T.J. Methane Hydrate Induced Permeability Modification for Multiphase Flow in Unsaturated Porous Media. J. Geophys. Res. Solid Earth 2011, 116, 1–15. [Google Scholar] [CrossRef]
- Almenningen, S.; Iden, E.; Fernø, M.A.; Ersland, G. Salinity Effects on Pore-Scale Methane Gas Hydrate Dissociation. J. Geophys. Res. Solid Earth 2018, 123, 5599–5608. [Google Scholar] [CrossRef]
- Clennell, M.B.; Hovland, M.; Booth, J.S.; Henry, P.; Winters, W.J. Formation of Natural Gas Hydrates in Marine Sediments: 1. Conceptual Model of Gas Hydrate Growth Conditioned by Host Sediment Properties. J. Geophys. Res. Solid Earth 1999, 104, 22985–23003. [Google Scholar]
- Chaouachi, M.; Falenty, A.; Sell, K.; Enzmann, F.; Kersten, M.; Haberthür, D.; Kuhs, W.F. Microstructural Evolution of Gas Hydrates in Sedimentary Matrices Observed with Synchrotron X-Ray Computed Tomographic Microscopy. Geochem. Geophys. 2015, 16, 1711–1722. [Google Scholar] [CrossRef]
- Colorado School of Mines. Center for Hydrate Research. 2015. Available online: http://hydrates.mines.edu/CHR/Software.html (accessed on 2 March 2016).
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almenningen, S.; Fotland, P.; Ersland, G. Magnetic Resonance Imaging of Methane Hydrate Formation and Dissociation in Sandstone with Dual Water Saturation. Energies 2019, 12, 3231. https://doi.org/10.3390/en12173231
Almenningen S, Fotland P, Ersland G. Magnetic Resonance Imaging of Methane Hydrate Formation and Dissociation in Sandstone with Dual Water Saturation. Energies. 2019; 12(17):3231. https://doi.org/10.3390/en12173231
Chicago/Turabian StyleAlmenningen, Stian, Per Fotland, and Geir Ersland. 2019. "Magnetic Resonance Imaging of Methane Hydrate Formation and Dissociation in Sandstone with Dual Water Saturation" Energies 12, no. 17: 3231. https://doi.org/10.3390/en12173231
APA StyleAlmenningen, S., Fotland, P., & Ersland, G. (2019). Magnetic Resonance Imaging of Methane Hydrate Formation and Dissociation in Sandstone with Dual Water Saturation. Energies, 12(17), 3231. https://doi.org/10.3390/en12173231