# Energy Management through Cost Forecasting for Residential Buildings in New Zealand

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Literature Review

#### 2.1. Influencing Factors of Residential Energy Use

#### 2.2. Cost Forecasting Methods

#### 2.3. Energy Consumption Forecasting

## 3. Research Methods

#### 3.1. Data

#### 3.2. Correlation Analysis

#### 3.3. Exponential Smoothing

#### 3.3.1. Holt-Winters Method

_{1}is the growth rate; S

_{t}is a seasonal pattern; ${\u03f5}_{t}$ is the error term.

#### 3.3.2. Multiplicative Holt-Winters Method

#### 3.4. Autoregressive Integrated Moving Average (ARIMA)

_{L}is introduced, where P represents seasonal autoregressive orders, D indicates seasonal differencing orders, Q represents seasonal moving average orders, and L indicates the number of seasons. A seasonal ARIMA model can be shown in Equation (14).

**L**= 4 for quarterly data and

**L**= 12 for monthly data); $\mathsf{\delta}$ is a constant term; ${a}_{t},{a}_{t-1},\cdots $ are random shocks; ${\varnothing}_{1},{\varnothing}_{2},\cdots ,{\varnothing}_{p}$ are non-seasonal autoregressive parameters; ${\phi}_{1,L},{\phi}_{2,L},\cdots ,{\phi}_{P,L}$ are seasonal autoregressive parameters; ${\theta}_{1},{\theta}_{2},\cdots ,{\theta}_{q}$ are non-seasonal moving average parameters, ${\vartheta}_{1,L},{\vartheta}_{2,L},\cdots ,{\vartheta}_{Q,L}$ are seasonal moving average parameters.

#### 3.5. Error Measure for Model Comparison

_{i}) and the forecasting values for the same series by (${\widehat{y}}_{i}$). The mean absolute percentage error (MAPE) can be computed in Equation (16).

#### 3.6. Multilayer Artificial Neutral Networks

#### 3.7. t-Test

## 4. Data Analysis

#### 4.1. Correlation Analysis Results

#### 4.2. Exponential Models for Building Cost

#### 4.3. Seasonal ARIMA Models

#### 4.4. ANN Models

## 5. Results Discussion

## 6. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## Abbreviations

ACF | Auto-Correlation Function |

ANNs | Artificial Neutral Networks |

AR | Autoregressive |

AR1 | One-storey House |

AR2 | Two-storey House |

AR3 | Townhouse |

AR4 | Apartment |

AR5 | Retirement Village |

ARIMA | Autoregressive Integrated Moving Average |

BIC | Bayesian Information Criterion |

ES | Exponential Smoothing Method |

HVAC | Heating, Ventilation and Air Conditioning |

HW | Holt-Winter Method |

MA | Moving Average |

MAE | Mean Absolute Error |

MAPE | Mean Absolute Percentage Error |

MHW | Multiplicative Holt-Winter Method |

PACF | Partial Auto-Correlation Function |

RMSE | Root Mean Square Error |

SAC | Sample Auto-Correlation Function |

SAR | Seasonal Autoregressive |

SE | Standard Error |

SSE | Sum of Squared Error |

SMA | Seasonal Moving Average |

SPAC | Sample Partial Auto-Correlation Function |

## References

- Isaacs, N.; Camilleri, M.; French, L.; Pollard, A.; Saville-Smith, K.; Fraser, R.; Rossouw, P.; Jowett, J. Energy Use in New Zealand Households Report on the Year 10 Analysis for the Household Energy End-Use Project; Building Research Association of New Zealand (BRANZ): Porirua, New Zealand, 2016; pp. 1–134. [Google Scholar]
- RBNZ. Housing Risks Require a Broad Policy Response; Reserve Bank of New Zealand: Wellington, New Zealand, 2016. [Google Scholar]
- Holt, C.C. Forecasting seasonals and trends by exponentially weighted moving averages. Int. J. Forecast.
**2004**, 1, 5–10. [Google Scholar] [CrossRef] - Brown, R.G. Statistical Forecasting for Inventory Control; McGraw-Hill: New York, NY, USA, 1959. [Google Scholar]
- Hyndman, R.J.; Koehler, A.B.; Ord, J.K.; Snyder, R.D. Forecasting with Exponential Smoothing: The State Space Approaches; Springer-Verlag: Berlin, Germany, 2008. [Google Scholar]
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C. Time Series Analysis: Forecasting and Control; Holden-Day: Oakland, CA, USA, 2011. [Google Scholar]
- Gujarati, D.N. Basic Econometrics; Elsevier: Rio de Janeiro, Brasil, 2006. [Google Scholar]
- Ahmad, A.S.; Hassan, M.Y.; Abdullah, M.P.; Rahman, H.A.; Hussin, F.; Abdullah, H.; Saidur, R. A review on applications of ANN and SVM for building electrical energy consumption forecasting. Renew. Sustain. Energy Rev.
**2014**, 33, 102–109. [Google Scholar] [CrossRef] - Bhandari, M.; Shrestha, S.; New, J. Evaluation of weather datasets for building energy simulation. Energy Build.
**2012**, 49, 109–118. [Google Scholar] [CrossRef] - Hopfe, C.J.; Hensen, J.L.M. Uncertainty analysis in building performance simulation for design support. Energy Build.
**2011**, 43, 2798–2805. [Google Scholar] [CrossRef] [Green Version] - Kaynakli, O. A review of the economical and optimum thermal insulation thickness for building applications. Renew. Sustain. Energy Rev.
**2012**, 16, 415–425. [Google Scholar] [CrossRef] - Byun, J.; Shin, T. Design and implementation of an energy-saving lighting control system considering user satisfaction. IEEE Trans. Consum. Electron.
**2018**, 64, 61–68. [Google Scholar] [CrossRef] - Yu, Z.; Fung, B.C.M.; Haghighat, F.; Yoshino, H.; Morofsky, E. A systematic procedure to study the influence of occupant behavior on building energy consumption. Energy Build.
**2010**, 43, 1409–1417. [Google Scholar] [CrossRef] - Gill, Z.M.; Tierney, M.J.; Pegg, I.M.; Allan, N. Low energy dwellings: The contribution of behaviours to actual performance. Build. Res. Inf.
**2010**, 38, 491–508. [Google Scholar] [CrossRef] - Bichiou, Y.; Krarti, M. Optimization of envelope and HVAC systems selection for residential buildings. Energy Build.
**2011**, 43, 3373–3382. [Google Scholar] [CrossRef] - Tuhus-Dubrow, D.; Krarti, M. Genetic-algorithm based approach to optimize building envelope design for residential buildings. Build. Environ.
**2010**, 45, 1574–1581. [Google Scholar] [CrossRef] - Gasparella, A.; Pernigotto, G.; Cappelletti, F.; Romagnoni, P.; Baggio, P. Analysis and modelling of window and glazing systems energy performance for a well insulated residential building. Energy Build.
**2011**, 43, 1030–1037. [Google Scholar] [CrossRef] - Ihm, P.; Krarti, M. Design optimization of energy efficient residential buildings in Tunisia. Build. Environ.
**2012**, 58, 81–90. [Google Scholar] [CrossRef] - Jaber, S.; Ajib, S. Optimum, technical and energy efficiency design of residential building in Mediterranean region. Energy Build.
**2011**, 43, 1829–1834. [Google Scholar] [CrossRef] - Kapsalaki, M.; Leal, V.; Santamouris, M. A methodology for economic efficient design of net zero energy buildings. Energy Build.
**2012**, 55, 765–778. [Google Scholar] [CrossRef] - Yao, J. Energy optimization of building design for different housing units in apartment buildings. Appl. Energy
**2012**, 94, 330–337. [Google Scholar] [CrossRef] - Magnier, L.; Haghighat, F. Multi objective optimization of building design using TRNSYS simulations, geneticalgorithm, and artificial neural network. Build. Environ.
**2010**, 45, 739–746. [Google Scholar] [CrossRef] - Domínguez, S.; Sendra, J.J.; León, A.L.; Esquivias, P.M. Towards energy demand reduction in social housing buildings: Envelope system optimization strategies. Energies
**2012**, 5, 2263–2287. [Google Scholar] [CrossRef] - Griego, D.; Krarti, M.; Hernández-Guerrero, A. Optimization of energy efficiency and thermal comfort measures for residential buildings in Salamanca, Mexico. Energy Build.
**2012**, 54, 540–549. [Google Scholar] [CrossRef] - Hamdy, M.; Hasan, A.; Siren, K. Applying a multi-objective optimization approach for design of low-emission cost-effective dwellings. Build. Environ.
**2011**, 46, 109–123. [Google Scholar] [CrossRef] - Hamdy, M.; Hasan, A.; Siren, K. A multi-stage optimization method for cost-optimal and nearly-zero-energy building solutions in line with the EPBD-recast. Energy Build.
**2013**, 56, 189–203. [Google Scholar] [CrossRef] - Smeds, J.; Wall, M. Enhanced energy conservation in houses through high performance design. Energy Build.
**2007**, 39, 273–278. [Google Scholar] [CrossRef] - Szalay, Z. Modelling building stock geometry for energy, emission and mass calculations. Build. Res. Inf.
**2008**, 36, 557–567. [Google Scholar] [CrossRef] - Dylewski, R.; Adamczyk, J. Economic and environmental benefits of thermal insulation of building external walls. Build. Environ.
**2011**, 46, 2615–2623. [Google Scholar] [CrossRef] - Gustavsson, L.; Joelsson, A. Life cycle primary energy analysis of residential buildings. Energy Build.
**2010**, 42, 210–220. [Google Scholar] [CrossRef] - Beccali, M.; Cellura, M.; Fontana, M.; Longoa, S.; Mistretta, M. Energy retrofit of a single-family house: Life cycle net energy saving and environmental benefits. Renew. Sustain. Energy Rev.
**2013**, 27, 283–293. [Google Scholar] [CrossRef] - Debacker, W.; Allacker, K.; Spirinckx, C.; Geerken, T.; De Troyer, F. Identification of environmental and financial cost efficient heating and ventilation services for a typical residential building in Belgium. J. Clean. Prod.
**2013**, 57, 188–199. [Google Scholar] [CrossRef] - Konstantinou, T.; Knaack, U. An approach to integrate energy efficiency upgrade into refurbishment design process, applied in twocase-study buildings in Northern European climate. Energy Build.
**2013**, 59, 301–309. [Google Scholar] [CrossRef] - Risholt, B.; Time, B.; Hestnes, A.G. Sustainability assessment of nearly zero energy renovation of dwellings based on energy, economy and home quality indicators. Energy Build.
**2013**, 60, 217–224. [Google Scholar] [CrossRef] [Green Version] - Estiri, H. The indirect role of households in shaping US residential energy demand patterns. Energy Policy
**2015**, 86, 585–594. [Google Scholar] [CrossRef] - Estiri, H. A structural equation model of energy consumption in the United States: Untagling the complexity of per-capita residential energy use. Energy Res. Soc. Sci.
**2015**, 6, 109–120. [Google Scholar] [CrossRef] - Belaid, F. Untangling the complexity of the direct and indirect determinants of the residential energy consumption in France: Quantitative analysis using a structural equation modeling approach. Energy Policy
**2017**, 110, 246–256. [Google Scholar] [CrossRef] - Hu, M. Does zero energy building cost more?—An empirical comparison of the construction costs for zero energy education building in United States. Sustain. Cities Soc.
**2019**, 45, 324–334. [Google Scholar] [CrossRef] - Ballarini, I.; Corrado, V.; Madonna, F.; Paduos, S.; Ravasio, F. Energy refurbishment of the Italian residential building stock: Energy and cost analysis through the application of the building typology. Energy Policy
**2017**, 105, 148–160. [Google Scholar] [CrossRef] - Baglivo, C.; Congedo, P.; D’Agostino, D.; Zacà, I. Cost-optimal analysis and technical comparison between standard and high efficient mono-residential buildings in a warm climate. Energy
**2015**, 83, 560–575. [Google Scholar] [CrossRef] - Williams, T.P. Predicting changes in construction cost indexes using neural networks. J. Constr. Eng. Manag.
**1994**, 120, 306–320. [Google Scholar] [CrossRef] - Hwang, S.; Liu, L.Y. Contemporaneous time series and forecasting methodologies for predicting short-term productivity. J. Constr. Eng. Manag.
**2010**, 136, 1047–1055. [Google Scholar] [CrossRef] - Lu, T.; AbouRizk, S.M. Automated box-jenkins forecasting modelling. Autom. Constr.
**2009**, 18, 547–558. [Google Scholar] [CrossRef] - Fellows, R.F. Escalation management: Forecasting the effects of inflation on building projects. Constr. Manag. Econ.
**1991**, 9, 187–204. [Google Scholar] [CrossRef] - Ng, S.T.; Cheung, S.O.; Skitmore, M.; Wong, T.C. An integrated regression analysis and time series model for construction tender price index forecasting. Constr. Manag. Econ.
**2004**, 22, 483–493. [Google Scholar] [CrossRef] [Green Version] - Wong, J.M.W.; Chan, A.; Chiang, Y. Time series forecasts of construction labor market in Hong Kong: The box-jenkins approach. Constr. Manag. Econ.
**2005**, 23, 979–991. [Google Scholar] [CrossRef] - Ashuri, B.; Lu, J. Time series analysis of ENR construction cost index. ASCE J. Constr. Manag. Econ.
**2010**, 136, 1227–1237. [Google Scholar] [CrossRef] - Li, C.; Ding, Z.; Zhao, D.; Yi, J.; Zhang, G. Building energy consumption prediction: An extreme deep learning approach. Energies
**2017**, 10, 1525. [Google Scholar] [CrossRef] - Zeng, B.; Zhou, M.; Zhang, J. Forecasting the energy consumption of China’s manufacturing using a homologous grey prediction model. Sustainability
**2017**, 9, 1975. [Google Scholar] [CrossRef] - Amber, K.P.; Ahmad, R.; Aslam, M.W.; Kousar, A.; Usman, M.; Khan, M.S. Intelligent techniques for forecasting electricity consumption of buildings. Energy
**2018**, 157, 886–893. [Google Scholar] [CrossRef] - Lu, X.; Lu, T.; Kibert, C.J.; Viljanen, M. Modeling and forecasting energy consumption for heterogeneous buildings using a physical-statistical approach. Appl. Energy
**2015**, 144, 261–275. [Google Scholar] [CrossRef] - Lomet, A.; Suard, F.; Cheze, D. Statistical modeling for real domestic hot water consumption forecasting. Energy Procedia
**2015**, 70, 379–387. [Google Scholar] [CrossRef] - Ma, Z.; Li, H.; Sun, Q.; Wang, C.; Yan, A.; Starfelt, F. Statistical analysis of energy consumption patterns on the heat demand of buildings in district heating systems. Energy Build.
**2014**, 85, 464–472. [Google Scholar] [CrossRef] - Fumo, N.; Biswas, M.A.R. Regression analysis for prediction of residential energy consumption. Renew. Sustain. Energy Rev.
**2015**, 47, 332–343. [Google Scholar] [CrossRef] - Abdallah, M.; El-Rayes, K.; Liu, L. Economic and GHG emission analysis of implementing sustainable measures in existing public buildings. J. Perform. Constr. Facil.
**2016**, 30, 04016055. [Google Scholar] [CrossRef] - Copiello, S. Achieving affordable housing through energy efficiency strategy. Energy Policy
**2015**, 85, 288–298. [Google Scholar] [CrossRef] - Groissböck, M.; Heydari, S.; Mera, A.; Perea, E.; Siddiqui, A.S.; Stadler, M. Optimizing building energy operations via dynamic zonal temperature settings. J. Energy Eng.
**2014**, 140, 04013008. [Google Scholar] [CrossRef] - Li, D.H.W.; Yang, L.; Lam, J.C. Impact of climate changes on energy use in the built environment in different climate zones—A review. Energy
**2012**, 42, 103–112. [Google Scholar] [CrossRef] - Menassa, C.C.; Kamat, V.R.; Lee, S.H.; Azar, E.; Feng, C.; Anderson, K. Conceptual framework to optimize building energy consumption by coupling distributed energy simulation and occupancy models. J. Comput. Civil Eng.
**2014**, 28, 50–62. [Google Scholar] [CrossRef] - Muringathuparambila, R.J.; Musangoa, J.K.; Brentb, A.C.; Curriea, P. Developing building typologies to examine energy efficiency in representative low cost buildings in Cape Town townships. Sustain. Cities Soc.
**2017**, 33. [Google Scholar] [CrossRef] - Kaboli, S.H.A.; Fallahpour, A.; Selvaraj, J.; Rahim, N.A. Long-term electrical energy consumption formulating and forecasting via optimized gene expression programming. Energy
**2017**, 126, 144–164. [Google Scholar] [CrossRef] - Zeng, Y.R.; Zeng, Y.; Choi, B.; Wang, L. Multifactor-influenced energy consumption forecasting using enhanced back-propagation neural network. Energy
**2017**, 127, 381–396. [Google Scholar] [CrossRef] - Wang, X.; Xu, D.L.; Sun, Z.Z. Estimates of energy consumption in China using a self-adaptive multi-verse optimizer-based support vector machine with rolling cross-validation. Energy
**2018**, 152, 539–548. [Google Scholar] [CrossRef] - Oliveira, E.M.; Oliveira, F.L.C. Forecasting mid-long term electric energy consumption through bagging ARIMA and exponential smoothing methods. Energy
**2018**, 144, 776–788. [Google Scholar] [CrossRef] - Kovacic, M.; Sarler, B. Genetic programming prediction of the natural gas consumption in a steel plant. Energy
**2014**, 66, 273–284. [Google Scholar] [CrossRef] - Silva, F.L.C.; Souza, R.C.; Oliveira, F.L.C.; Lourenco, P.M.; Calili, R.F. A bottom-up methodology for long term electricity consumption forecasting of an industrial sector—Application to pulp and paper sector in Brazil. Energy
**2018**, 144, 1107–1118. [Google Scholar] [CrossRef] - Biswas, M.A.R.; Robinson, M.D.; Fumo, N. Prediction of residential building energy consmption: A neural network approach. Energy
**2016**, 117, 84–92. [Google Scholar] [CrossRef] - Wang, J.; Wang, J. Forecasting energy market indices with recurrent neural networks: Cast study of crude oil price fluctuations. Energy
**2016**, 102, 365–374. [Google Scholar] [CrossRef] - Zeng, C.; Wu, C.; Zuo, L.; Zhang, B.; Hu, X. Predicting energy consumption of multiproduct pipeline using artificial neural networks. Energy
**2014**, 66, 791–798. [Google Scholar] [CrossRef] - ICMS. Global Consistency in Presenting Construction Costs; International Construction Measurement Standards: London, UK, 2017. [Google Scholar]
- Chatfield, C. Time Series Forecasting; Chapman & Hall/CRC: London, UK, 2001. [Google Scholar]
- Franzese, M.; Iuliano, A. Correlation analysis. Encycl. Bioinform. Comput. Biol.
**2019**, 1, 706–721. [Google Scholar] - Pearson, K. Notes on regression and inheritance in the case of two parents. Proc. R. Soc. Lond.
**1895**, 58, 240–242. [Google Scholar] - Bowerman, B.L.; O’Connell, R.; Koehler, A. Forecasting, Time Series, and Regression; Thomson Learning Inc.: Stamford, CT, USA, 2005. [Google Scholar]
- Hyndman, R.J.; Koehler, A.B.; Snyder, R.D.; Grose, S. A state space framework for automatic forecasting using exponential smoothing methods. Int. J. Forecast.
**2002**, 18, 439–454. [Google Scholar] [CrossRef] [Green Version] - Gardner, E.S., Jr. Exponential smoothing: The state of the art. Int. J. Forecast.
**2006**, 22, 637–666. [Google Scholar] [CrossRef] - Maia, A.L.S.; de Carvalho, F.A.T. Holtas exponential smoothing and neural network models for forecasting interval-valued time series. Int. J. Forecast.
**2011**, 27, 740–759. [Google Scholar] [CrossRef] - Box-Jenkins, G.E.P.; Gwilym, M.; Reinsel, G.C. Time Series Analysis: Forecasting and Control; Prentice Hall: Upper Saddle River, NJ, USA, 1994. [Google Scholar]
- Ljung, G.M.; Box, G.E. On a measure of a lack of fit in time series models. Biometrika
**1978**, 65, 297–303. [Google Scholar] [CrossRef] - Hyndman, R.J.; Athanasopoulous, G. Forecasting: Principles and Practice. Available online: https://otexts.com/fpp2/ (accessed on 9 June 2019).
- Krol, R. Evaluating state revenue forecasting under a flexible loss function. Int. J. Forecast.
**2013**, 29, 282–289. [Google Scholar] [CrossRef] [Green Version] - Kankal, M.; Uzlu, E. Neural network approach with teaching-learning-based optimization for modelling and forecasting long-term electric energy demand in Turkey. Neural Comput. Appl.
**2017**, 28, 737–747. [Google Scholar] [CrossRef] - Musttaffa, Z.; Yusof, Y.; Kamaruddin, S.S. Enhanced artificial bee colony for training least squares support vector machines in commodity price forecasting. J. Comput. Sci.
**2014**, 5, 196–205. [Google Scholar] [CrossRef] - Zhang, G.; Patuwo, B.E.; Hu, M.Y. Forecasting with artificial neural networks: The state of the art. Int. J. Forecast.
**1998**, 14, 35–62. [Google Scholar] [CrossRef] - Martin, J.F. How to choose a statistical test. Eur. J. Lipid Sci. Tech.
**2012**, 114, 865–868. [Google Scholar] [CrossRef] - McNeish, D.M.; Stapleton, L.M. The effect of small sample size on two-level model estimates: A review and illustration. Educ. Psychol. Rev.
**2014**, 28, 295–314. [Google Scholar] [CrossRef] - Hanusz, Z.; Tarasinska, J.; Zielinski, W. Shapiro-Wilk test with known mean. REVSTAT Stat. J.
**2016**, 14, 89–100. [Google Scholar] - Xiang, C.; Ding, S.Q.; Lee, T.H. Geometrical interpretation and architecture selection of MLP. IEEE Trans. Neural Netw.
**2005**, 16, 84–96. [Google Scholar] [CrossRef] [PubMed]

**Figure 5.**Sample autocorrelation function (ACF) (left panels) and sample partial autocorrelation (PA).

**Figure 6.**ACFs (left panels) and partial autocorrelation functions (PACFs) (right panels) of the differenced data series.

Residential Building Cost | |||||
---|---|---|---|---|---|

Energies | AR1 | AR2 | AR3 | AR4 | AR5 |

Electricity | 0.974 ** | 0.977 ** | 0.984 ** | 0.782 ** | 0.833 ** |

Gas | 0.976 ** | 0.994 ** | 0.968 ** | 0.966 ** | 0.898 ** |

Petrol | 0.919 ** | 0.916 ** | 0.937 ** | 0.884 ** | 0.640 ** |

Series | Exponential Smoothing Model | Parameter | Estimate | SE | p-Value |
---|---|---|---|---|---|

α | 0.370 | 0.116 | 0.002 | ||

ES(AHW) | β | 0.634 | 0.287 | 0.032 ** | |

AR1 | γ | 0 | 0.112 | 0.993 | |

α | 0.379 | 0.112 | 0.001 ** | ||

ES(MHW) | β | 0.537 | 0.251 | 0.037 ** | |

γ | 0.528 | 0.171 | 0.003 ** | ||

α | 0.899 | 0.150 | *** | ||

ES(AHW) | β | 0 | 0.047 | 1 | |

AR2 | γ | 0 | 0.696 | 1 | |

α | 0.846 | 0.145 | *** | ||

ES(MHW) | β | 0.001 | 0.045 | 0.983 | |

γ | 0.028 | 0.298 | 0.925 | ||

α | 0.683 | 0.135 | *** | ||

ES(AHW) | β | 0.218 | 0.113 | 0.059 * | |

AR3 | γ | 0.001 | 0.171 | 0.995 | |

α | 0.578 | 0.128 | *** | ||

ES(MHW) | β | 0.269 | 0.128 | 0.042 ** | |

γ | 0.020 | 0.091 | 0.830 | ||

α | 0.200 | 0.079 | 0.014 ** | ||

ES(AHW) | β | 1.000 | 0.467 | 0.037 ** | |

AR4 | γ | 0 | 0.091 | 1 | |

α | 0.198 | 0.083 | 0.021 ** | ||

ES(MHW) | β | 1.000 | 0.503 | 0.052 * | |

γ | 0.040 | 0.062 | 0.524 | ||

α | 0.469 | 0.118 | *** | ||

ES(AHW) | β | 0.441 | 0.194 | 0.027 ** | |

AR5 | γ | 0.014 | 0.096 | 0.883 | |

α | 0.361 | 0.096 | *** | ||

ES(MHW) | β | 0.511 | 0.225 | 0.028 ** | |

γ | 0.479 | 0.151 | 0.003 ** |

Series | Model | R-Square | RMSE | MAPE | MAE | BIC | Ljung-Box | Shapiro-Wilk |
---|---|---|---|---|---|---|---|---|

AR1 | ES(AHW) | 0.976 | 33.205 | 1.655 | 24.52 | 7.233 | 0.238 | 0.203 |

ES(MHW) | 0.974 | 34.311 | 1.581 | 23.722 | 7.299 | 0.805 | 0.102 | |

AR2 | ES(AHW) | 0.947 | 62.506 | 2.066 | 35.292 | 8.498 | 0.891 | 0.153 |

ES(MHW) | 0.943 | 64.989 | 2.159 | 37.134 | 8.576 | 0.904 | 0.133 | |

AR3 | ES(AHW) | 0.964 | 52.405 | 1.953 | 36.27 | 8.146 | 0.13 | 0.103 |

ES(MHW) | 0.959 | 55.473 | 2.054 | 38.568 | 8.26 | 0.106 | 0.173 | |

AR4 | ES(AHW) | 0.989 | 45.577 | 1.32 | 31.825 | 7.867 | 0.593 | 0.127 |

ES(MHW) | 0.988 | 47.836 | 1.385 | 34.24 | 7.964 | 0.333 | 0.104 | |

AR5 | ES(AHW) | 0.991 | 36.083 | 1.312 | 27.824 | 7.4 | 0.477 | 0.393 |

ES(MHW) | 0.989 | 39.374 | 1.356 | 28.715 | 7.574 | 0.415 | 0.647 |

Series | Model | AR | MA | SAR | SMA |
---|---|---|---|---|---|

AR1 | ARIMA(0,1,3)(0,1,1)_{4}ARIMA(0,1,1)(0,1,1) _{4} | MA(l) = 0.34l MA(2) = −0.l0l MA(3) = −0.295 MA(l) = 0.3l7 | SMA(l) = 0.447 SMA(l) = 0.290 | ||

AR2 | ARIMA(0,1,0)(2,0,0)_{4}ARIMA(0,1,0)(0,0,2) _{4} | SAR(1) = 0.038 SAR(2) = 0.348 | SMA(l) = −0.005 SMA(2) = −0.368 | ||

AR3 | ARIMA(0,1,0)(1,0,0)_{4}ARIMA(0,1,0)(0,1,0) _{4} | SAR(l) = 0.562 | |||

AR4 | ARIMA(1,1,0)(0,1,0)_{4}ARIMA(0,1,1)(0,1,0) _{4} | AR(l) = −0.4l9 | MA(l) = 0.404 | ||

AR5 | ARIMA(0,1,0)(0,1,1)_{4}ARIMA(0,1,0)(0,1,0) _{4} | SMA(l) = 0.554 |

Series | Model | R-Square | RMSE | MAPE | MAE | BIC | Ljung-Box | Shapiro-Wilk |
---|---|---|---|---|---|---|---|---|

AR1 | ARIMA(0,1,3)(0,1,1)_{4} | 0.959 | 37.234 | 1.716 | 25.866 | 7.644 | 0.873 | 0.461 |

ARIMA(0,1,1)(0,1,1)_{4} | 0.953 | 38.665 | 1.856 | 27.895 | 7.556 | 0.519 | 0.158 | |

AR2 | ARIMA(0,1,0)(2,0,0)_{4} | 0.942 | 63.899 | 2.221 | 38.057 | 8.546 | 0.877 | 0.184 |

ARIMA(0,1,0)(0,0,2)_{4} | 0.942 | 63.865 | 2.256 | 38.766 | 8.545 | 0.898 | 0.136 | |

AR3 | ARIMA(0,1,0)(0,1,0)_{4} | 0.944 | 54.277 | 1.913 | 35.836 | 8.07 | 0.855 | 0.153 |

ARIMA(0,1,0)(4,1,0)_{4} | 0.95 | 53.423 | 1.823 | 33.945 | 8.366 | 0.956 | 0.122 | |

AR4 | ARIMA(1,1,0)(0,1,0)_{4} | 0.981 | 51.468 | 1.53 | 37.383 | 8.046 | 0.657 | 0.391 |

ARIMA(0,1,1)(0,1,0)_{4} | 0.981 | 51.889 | 1.505 | 36.868 | 8.062 | 0.628 | 0.24 | |

AR5 | ARIMA(0,1,0)(0,1,1)_{4} | 0.986 | 40.162 | 1.325 | 27.306 | 7.55 | 0.489 | 0.127 |

ARIMA(0,1,0)(0,1,0)_{4} | 0.983 | 43.299 | 1.52 | 31.335 | 7.618 | 0.141 | 0.103 |

Predictors | Parameter Estimates | |||||
---|---|---|---|---|---|---|

Hidden Layer 1 | Output Layer | |||||

H (1:1) | H (1:2) | H (1:3) | H (1:4) | Electricity | ||

Input layer | AR1 | −0.119 | −0.094 | 1.067 | 0.304 | |

AR2 | −0.151 | −0.256 | −0.930 | 0.019 | ||

AR3 | −0.039 | −0.068 | 0.420 | −0.118 | ||

AR4 | 0.178 | −0.219 | 0.414 | 0.245 | ||

AR5 | −0.511 | −0.292 | −0.132 | 0.409 | ||

Bias | −0.339 | −1.477 | −0.409 | −0.215 | ||

Hidden layer 1 | H (1:1) | −0.291 | ||||

H (1:2) | −1.799 | |||||

H (1:3) | −1.209 | |||||

H (1:4) | 0.458 | |||||

Bias | −1.612 | |||||

Model training | SSE = 4.117 | |||||

Model testing | SSE = 1.359 | |||||

t-value | t = −0.841 | |||||

p-value | p = 0.403 |

Predictors | Parameter Estimates | ||||||
---|---|---|---|---|---|---|---|

Hidden Layer 1 | Hidden Layer 2 | Output Layer | |||||

H (1:1) | H (1:2) | H (1:3) | H (2:1) | H (2:2) | Gas | ||

Input layer | AR1 | −0.266 | 0.101 | 0.417 | |||

AR2 | 0.301 | −0.130 | 0.397 | ||||

AR3 | 0.339 | −0.372 | 0.211 | ||||

AR4 | 0.662 | 0.626 | 0.406 | ||||

AR5 | 0.504 | 0.732 | 0.548 | ||||

Bias | −0.394 | −0.456 | −0.029 | ||||

Hidden layer 1 | H (1:1) | −0.476 | −0.196 | ||||

H (1:2) | −0.916 | 0.282 | |||||

H (1:3) | −0.284 | −0.384 | |||||

Bias | 0.332 | 0.301 | |||||

Hidden layer 2 | H (2:1) | −0.852 | |||||

H (2:2) | 0.135 | ||||||

Bias | 0.230 | ||||||

Model training | SSE = 2.437 | ||||||

Model testing | SSE = 0.831 | ||||||

t-value | t = −0.491 | ||||||

p-value | p = 0.625 |

Predictors | Parameter Estimates | ||||
---|---|---|---|---|---|

Hidden Layer 1 | Output Layer | ||||

H (1:1) | H (1:2) | H (1:3) | Petrol | ||

Input layer | AR1 | 0.205 | −1.019 | −0.673 | |

AR2 | 0.091 | 0.756 | −0.086 | ||

AR3 | 0.085 | −0.557 | 0.219 | ||

AR4 | 0.354 | −0.757 | −0.773 | ||

AR5 | 0.018 | −0.636 | −0.441 | ||

Bias | −0.069 | 1.759 | 1.757 | ||

Hidden layer 1 | H (1:1) | −0.287 | |||

H (1:2) | −1.593 | ||||

H (1:3) | −0.338 | ||||

Bias | 1.015 | ||||

Model training | SSE = 1.644 | ||||

Model testing | SSE = 0.422 | ||||

t-value | t = 0.917 | ||||

p-value | p = 0.362 |

Series | Model | MAPE |
---|---|---|

AR1 | ARIMA(0,1,3)(0,1,1)_{4} | 1.813 |

ARIMA(0,1,1)(0,1,1)_{4} | 1.651 | |

ES(AHW) | 1.260 | |

ES(MHW) | 1.556 | |

AR2 | ARIMA(0,1,0)(2,0,0)_{4} | 0.922 |

ARIMA(0,1,0)(0,0,2)_{4} | 0.794 | |

ES(AHW) | 0.395 | |

ES(MHW) | 0.650 | |

AR3 | ARIMA(0,1,0)(0,1,0)_{4} | 1.020 |

ARIMA(0,1,0)(4,1,0)_{4} | 2.318 | |

ES(AHW) | 1.211 | |

ES(MHW) | 1.130 | |

AR4 | ARIMA(1,1,0)(0,1,0)_{4} | 0.501 |

ARIMA(0,1,1)(0,1,0)_{4} | 0.446 | |

ES(AHW) | 0.748 | |

ES(MHW) | 0.809 | |

AR5 | ARIMA(0,1,0)(0,1,1)_{4} | 0.853 |

ARIMA(0,1,0)(0,1,0)_{4} | 1.213 | |

ES(AHW) | 0.917 | |

ES(MHW) | 0.949 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zhao, L.; Liu, Z.; Mbachu, J.
Energy Management through Cost Forecasting for Residential Buildings in New Zealand. *Energies* **2019**, *12*, 2888.
https://doi.org/10.3390/en12152888

**AMA Style**

Zhao L, Liu Z, Mbachu J.
Energy Management through Cost Forecasting for Residential Buildings in New Zealand. *Energies*. 2019; 12(15):2888.
https://doi.org/10.3390/en12152888

**Chicago/Turabian Style**

Zhao, Linlin, Zhansheng Liu, and Jasper Mbachu.
2019. "Energy Management through Cost Forecasting for Residential Buildings in New Zealand" *Energies* 12, no. 15: 2888.
https://doi.org/10.3390/en12152888