Next Article in Journal
Improving Performance of Far Users in Cognitive Radio: Exploiting NOMA and Wireless Power Transfer
Previous Article in Journal
A Comparative Study of Methods for Measurement of Energy of Computing
Article Menu
Issue 11 (June-1) cover image

Export Article

Open AccessArticle

Joint Point-Interval Prediction and Optimization of Wind Power Considering the Sequential Uncertainties of Stepwise Procedure

1
School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
2
Guodian United Power Technology Company Limited, Beijing 100039, China
*
Author to whom correspondence should be addressed.
Energies 2019, 12(11), 2205; https://doi.org/10.3390/en12112205
Received: 1 May 2019 / Revised: 2 June 2019 / Accepted: 4 June 2019 / Published: 10 June 2019
  |  
PDF [4411 KB, uploaded 10 June 2019]
  |  

Abstract

To support high-level wind energy utilization, wind power prediction has become a more and more attractive topic. To improve prediction accuracy and flexibility, joint point-interval prediction of wind power via a stepwise procedure is studied in this paper. Firstly, time-information-granularity (TIG) is defined for ultra-short-term wind speed prediction. Hidden features of wind speed in TIGs are extracted via principal component analysis (PCA) and classified via adaptive affinity propagation (ADAP) clustering. Then, Gaussian process regression (GPR) with joint point-interval estimation ability is adopted for stepwise prediction of the wind power, including wind speed prediction and wind turbine power curve (WTPC) modeling. Considering the sequential uncertainties of stepwise prediction, theoretical support for an uncertainty enlargement effect is deduced. Uncertainties’ transmission from single-step or receding multi-step wind speed prediction to wind power prediction is explained in detail. After that, normalized indexes for point-interval estimation performance are presented for GPR parameters’ optimization via a hybrid particle swarm optimization-differential evolution (PSO-DE) algorithm. K-fold cross validation (K-CV) is used to test the model stability. Moreover, due to the timeliness of data-driven GPR models, an evolutionary prediction mechanism via sliding time window is proposed to guarantee the required accuracy. Finally, measured data from a wind farm in northern China are acquired for validation. From the simulation results, several conclusions can be drawn: the multi-model structure has insignificant advantages for wind speed prediction via GPR; joint point-interval prediction of wind power is realizable and very reasonable; uncertainty enlargement exists for stepwise prediction of wind power while it is more significant after receding multi-step prediction of wind speed; a reasonable quantification mechanism for uncertainty is revealed and validated. View Full-Text
Keywords: Gaussian process regression; hybrid PSO-DE optimization; joint point-interval prediction; stepwise prediction of wind power; ultra-short-term prediction; uncertainty transmission Gaussian process regression; hybrid PSO-DE optimization; joint point-interval prediction; stepwise prediction of wind power; ultra-short-term prediction; uncertainty transmission
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Hu, Y.; Qiao, Y.; Chu, J.; Yuan, L.; Pan, L. Joint Point-Interval Prediction and Optimization of Wind Power Considering the Sequential Uncertainties of Stepwise Procedure. Energies 2019, 12, 2205.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Energies EISSN 1996-1073 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top