Investigation of Soot Formation in a Novel Diesel Fuel Burner
Abstract
:1. Introduction
2. Background and Methods
2.1. Soot Characterization for Liquid Fuels
2.2. Laser-Induced Incandescence
2.3. Elastic Light Scattering
3. Experimental Apparatus and Approach
3.1. Laminar Diesel Burner
3.2. Laser-Induced Incandescence Set-Up
3.3. Wide Angle Light Scattering Set-Up
4. Results and Discussion
4.1. Determination of Soot Concentration
4.2. Characterization of Morphological Soot Properties
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bond, T.C.; Doherty, S.J.; Fahey, D.; Forster, P.; Berntsen, T.; DeAngelo, B.; Flanner, M.; Ghan, S.; Kärcher, B.; Koch, D. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Lemaire, R.; Bejaoui, S.; Therssen, E. Study of soot formation during the combustion of Diesel, rapeseed methyl ester and their surrogates in turbulent spray flames. Fuel 2013, 107, 147–161. [Google Scholar] [CrossRef]
- Khalife, E.; Tabatabaei, M.; Demirbas, A.; Aghbashlo, M. Impacts of additives on performance and emission characteristics of diesel engines during steady state operation. Prog. Energy Combust. Sci. 2017, 59, 32–78. [Google Scholar] [CrossRef]
- Mansurov, Z. Soot formation in combustion processes. Combust. Explos. Shock Waves 2005, 41, 727. [Google Scholar] [CrossRef]
- Karataş, A.E.; Gülder, Ö.L. Soot formation in high pressure laminar diffusion flames. Prog. Energy Combust. Sci. 2012, 38, 818–845. [Google Scholar] [CrossRef]
- Oltmann, H.; Reimann, J.; Will, S. Wide-angle light scattering (WALS) for soot aggregate characterization. Combust. Flame 2010, 157, 516–522. [Google Scholar] [CrossRef]
- Reimann, J.; Kuhlmann, S.-A.; Will, S. 2D aggregate sizing by combining laser-induced incandescence (LII) and elastic light scattering (ELS). Appl. Phys. B 2009, 96, 583–592. [Google Scholar] [CrossRef]
- Wang, Y.; Makwana, A.; Iyer, S.; Linevsky, M.; Santoro, R.J.; Litzinger, T.A.; O’Connor, J. Effect of fuel composition on soot and aromatic species distributions in laminar, co-flow flames. Part 1. Non-premixed fuel. Combust. Flame 2018, 189, 443–455. [Google Scholar] [CrossRef]
- Ni, T.; Pinson, J.; Gupta, S.; Santoro, R. Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence. Appl. Opt. 1995, 34, 7083–7091. [Google Scholar] [CrossRef]
- Sorensen, C. Light scattering by fractal aggregates: A review. Aerosol Sci. Technol. 2001, 35, 648–687. [Google Scholar] [CrossRef]
- Hong, Z.; Davidson, D.; Vasu, S.; Hanson, R. The effect of oxygenates on soot formation in rich heptane mixtures: A shock tube study. Fuel 2009, 88, 1901–1906. [Google Scholar] [CrossRef]
- Mathieu, O.; Chaumeix, N.; Paillard, C.-E. Soot formation from a distillation cut of a Fischer–Tropsch diesel fuel: A shock tube study. Combust. Flame 2012, 159, 2192–2201. [Google Scholar] [CrossRef]
- Inal, F.; Senkan, S.M. Effects of equivalence ratio on species and soot concentrations in premixed n-heptane flames. Combust. Flame 2002, 131, 16–28. [Google Scholar] [CrossRef] [Green Version]
- D’Anna, A.; Alfe, M.; Apicella, B.; Tregrossi, A.; Ciajolo, A. Effect of fuel/air ratio and aromaticity on sooting behavior of premixed heptane flames. Energy Fuels 2007, 21, 2655–2662. [Google Scholar] [CrossRef]
- Moss, J.; Aksit, I. Modelling soot formation in a laminar diffusion flame burning a surrogate kerosene fuel. Proc. Combus. Inst. 2007, 31, 3139–3146. [Google Scholar] [CrossRef]
- De Andrade Oliveira, M.; Olofsson, N.-E.; Johnsson, J.; Bladh, H.; Lantz, A.; Li, B.; Li, Z.; Aldén, M.; Bengtsson, P.-E.; Luijten, C. Soot, PAH and OH measurements in vaporized liquid fuel flames. Fuel 2013, 112, 145–152. [Google Scholar] [CrossRef]
- Lapuerta, M.; Barba, J.; Sediako, A.D.; Kholghy, M.R.; Thomson, M.J. Morphological analysis of soot agglomerates from biodiesel surrogates in a coflow burner. J. Aerosol Sci. 2017, 111, 65–74. [Google Scholar] [CrossRef]
- Solero, G. Experimental analysis of the influence of inert nano-additives upon combustion of diesel sprays. Nanosci. Nanotechnol. 2012, 2, 129–133. [Google Scholar] [CrossRef]
- Lemaire, R.; Faccinetto, A.; Therssen, E.; Ziskind, M.; Focsa, C.; Desgroux, P. Experimental comparison of soot formation in turbulent flames of diesel and surrogate diesel fuels. Proc. Combus. Inst. 2009, 32, 737–744. [Google Scholar] [CrossRef]
- Du, C.; Andersson, S.; Andersson, M. Two-dimensional measurements of soot in a turbulent diffusion diesel flame: The effects of injection pressure, nozzle orifice diameter, and gas density. Combust. Sci. Technol. 2018, 196, 1659–1688. [Google Scholar] [CrossRef]
- Matti Maricq, M. Physical and chemical comparison of soot in hydrocarbon and biodiesel fuel diffusion flames: A study of model and commercial fuels. Combust. Flame 2011, 158, 105–116. [Google Scholar] [CrossRef]
- Lemaire, R.; Maugendre, M.; Schuller, T.; Therssen, E.; Yon, J. Original use of a direct injection high efficiency nebulizer for the standardization of liquid fuels spray flames. Rev. Sci. Instrum. 2009, 80, 105105. [Google Scholar] [CrossRef] [PubMed]
- Gerstmann, J.; Demetri, E.P.; Jacobs, J.N.; Pickard, D.W. Vaporizing Diesel Burner. Google Patents 5474442, 1991. Available online: https://patents.google.com/patent/US5474442A/en (accessed on 24 May 2019).
- Bryce, D.J.; Ladommatos, N.; Zhao, H. Quantitative investigation of soot distribution by laser-induced incandescence. Appl. Opt. 2000, 39, 5012–5022. [Google Scholar] [CrossRef]
- Michelsen, H.; Schulz, C.; Smallwood, G.; Will, S. Laser-induced incandescence: Particulate diagnostics for combustion, atmospheric, and industrial applications. Prog. Energy Combust. Sci. 2015, 51, 2–48. [Google Scholar] [CrossRef] [Green Version]
- Vander Wal, R.; Weiland, K. Laser-induced incandescence: Development and characterization towards a measurement of soot-volume fraction. Appl. Phys. B 1994, 59, 445–452. [Google Scholar] [CrossRef]
- Shaddix, C.R.; Harrington, J.E.; Smyth, K.C. Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame. Combust. Flame 1994, 99, 723–732. [Google Scholar] [CrossRef]
- Shaddix, C.R.; Smyth, K.C. Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames. Combust. Flame 1996, 107, 418–452. [Google Scholar] [CrossRef]
- Axelsson, B.; Collin, R.; Bengtsson, P.-E. Laser-induced incandescence for soot particle size measurements in premixed flat flames. Appl. Opt. 2000, 39, 3683–3690. [Google Scholar] [CrossRef] [PubMed]
- Walsh, K.T.; Fielding, J.; Smooke, M.D.; Long, M.B. Experimental and computational study of temperature, species, and soot in buoyant and non-buoyant coflow laminar diffusion flames. Proc. Combust. Inst. 2000, 28, 1973–1979. [Google Scholar] [CrossRef] [Green Version]
- McEnally, C.S.; Pfefferle, L.D. Improved sooting tendency measurements for aromatic hydrocarbons and their implications for naphthalene formation pathways. Combust. Flame 2007, 148, 210–222. [Google Scholar] [CrossRef]
- Vander Wal, R.L.; Jensen, K.A.; Choi, M.Y. Simultaneous laser-induced emission of soot and polycyclic aromatic hydrocarbons within a gas-jet diffusion flame. Combust. Flame 1997, 109, 399–414. [Google Scholar] [CrossRef]
- Das, D.D.; McEnally, C.S.; Pfefferle, L.D. Sooting tendencies of unsaturated esters in nonpremixed flames. Combust. Flame 2015, 162, 1489–1497. [Google Scholar] [CrossRef] [Green Version]
- Reimann, J.; Will, S. Optical diagnostics on sooting laminar diffusion flames in microgravity. Micrograv. Sci. Technol. 2005, 16, 333–337. [Google Scholar] [CrossRef]
- Kock, B.F.; Tribalet, B.; Schulz, C.; Roth, P. Two-color time-resolved LII applied to soot particle sizing in the cylinder of a Diesel engine. Combust. Flame 2006, 147, 79–92. [Google Scholar] [CrossRef]
- Schraml, S.; Will, S.; Leipertz, A. Simultaneous Measurement of Soot Mass Concentration and Primary Particle Size in the Exhaust of a DI Diesel Engine by Time-Resolved Laser-Induced Incandescence (TIRE-LII); 0148-7191; SAE Technical Paper; SAE: Warrendale, PA, USA, 1999. [Google Scholar]
- Wiltafsky, G.; Stolz, W.; Köhler, J.; Espey, C. The Quantification of Laser-Induced Incandescence (LII) for Planar Time Resolved Measurements of the Soot Volume Fraction in a Combusting Diesel Jet; 0148-7191; SAE Technical Paper; SAE: Warrendale, PA, USA, 1996. [Google Scholar]
- Sorensen, C.; Cai, J.; Lu, N. Light-scattering measurements of monomer size, monomers per aggregate, and fractal dimension for soot aggregates in flames. Appl. Opt. 1992, 31, 6547–6557. [Google Scholar] [CrossRef]
- Santoro, R.; Semerjian, H.; Dobbins, R. Soot particle measurements in diffusion flames. Combust. Flame 1983, 51, 203–218. [Google Scholar] [CrossRef]
- Puri, R.; Richardson, T.; Santoro, R.; Dobbins, R. Aerosol dynamic processes of soot aggregates in a laminar ethene diffusion flame. Combust. Flame 1993, 92, 320–333. [Google Scholar] [CrossRef]
- Hull, P.; Shepherd, I.; Hunt, A. Modeling light scattering from diesel soot particles. Appl. Opt. 2004, 43, 3433–3441. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, C.; Wang, G. Size distribution effect on the power law regime of the structure factor of fractal aggregates. Phys. Rev. E 1999, 60, 7143. [Google Scholar] [CrossRef]
- Huber, F.J.; Will, S.; Daun, K.J. Sizing aerosolized fractal nanoparticle aggregates through Bayesian analysis of wide-angle light scattering (WALS) data. J. Quant. Spectrosc. Radiat. Transf. 2016, 184, 27–39. [Google Scholar] [CrossRef]
- Oltmann, H.; Reimann, J.; Will, S. Single-shot measurement of soot aggregate sizes by wide-angle light scattering (WALS). Appl. Phys. B 2012, 106, 171–183. [Google Scholar] [CrossRef]
- Di Blasi, C. Modeling chemical and physical processes of wood and biomass pyrolysis. Progr. Energy Combust. Sci. 2008, 34, 47–90. [Google Scholar] [CrossRef]
- Maffi, S.; De Iuliis, S.; Cignoli, F.; Zizak, G. Investigation on thermal accommodation coefficient and soot absorption function with two-color Tire-LII technique in rich premixed flames. Appl. Phys. B 2011, 104, 357–366. [Google Scholar] [CrossRef]
- Eremin, A.; Gurentsov, E.; Popova, E.; Priemchenko, K. Size dependence of complex refractive index function of growing nanoparticles. Appl. Phys. B 2011, 104, 285–295. [Google Scholar] [CrossRef]
- Snelling, D.R.; Liu, F.; Smallwood, G.J.; Gülder, Ö.L. Determination of the soot absorption function and thermal accommodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion flame. Combust. Flame 2004, 136, 180–190. [Google Scholar] [CrossRef]
- Olofsson, N.-E.; Simonsson, J.; Török, S.; Bladh, H.; Bengtsson, P.-E. Evolution of properties for aging soot in premixed flat flames studied by laser-induced incandescence and elastic light scattering. Appl. Phys. B 2015, 119, 669–683. [Google Scholar] [CrossRef]
- De Iuliis, S.; Cignoli, F.; Zizak, G. Two-color laser-induced incandescence (2C-LII) technique for absolute soot volume fraction measurements in flames. Appl. Opt. 2005, 44, 7414–7423. [Google Scholar] [CrossRef]
- Frenklach, M. Reaction mechanism of soot formation in flames. Phys. Chem. Chem. Phys. 2002, 4, 2028–2037. [Google Scholar] [CrossRef]
- Johansson, K.; Head-Gordon, M.; Schrader, P.; Wilson, K.; Michelsen, H. Resonance-stabilized hydrocarbon-radical chain reactions may explain soot inception and growth. Science 2018, 361, 997–1000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulz, F.; Commodo, M.; Kaiser, K.; De Falco, G.; Minutolo, P.; Meyer, G.; Andrea, D.; Gross, L. Insights into incipient soot formation by atomic force microscopy. Proc. Combust. Inst. 2019, 37, 885–892. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palazzo, N.; Kögl, M.; Bauer, P.; Mannazhi, M.N.; Zigan, L.; Huber, F.J.T.; Will, S. Investigation of Soot Formation in a Novel Diesel Fuel Burner. Energies 2019, 12, 1993. https://doi.org/10.3390/en12101993
Palazzo N, Kögl M, Bauer P, Mannazhi MN, Zigan L, Huber FJT, Will S. Investigation of Soot Formation in a Novel Diesel Fuel Burner. Energies. 2019; 12(10):1993. https://doi.org/10.3390/en12101993
Chicago/Turabian StylePalazzo, Natascia, Matthias Kögl, Philipp Bauer, Manu Naduvil Mannazhi, Lars Zigan, Franz Johann Thomas Huber, and Stefan Will. 2019. "Investigation of Soot Formation in a Novel Diesel Fuel Burner" Energies 12, no. 10: 1993. https://doi.org/10.3390/en12101993
APA StylePalazzo, N., Kögl, M., Bauer, P., Mannazhi, M. N., Zigan, L., Huber, F. J. T., & Will, S. (2019). Investigation of Soot Formation in a Novel Diesel Fuel Burner. Energies, 12(10), 1993. https://doi.org/10.3390/en12101993