Effect of Pressure on the Removal of NH3 from Hydrolyzed and Pre-Fermented Slaughterhouse Waste for Better Biomethanization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hydrolysis and Fermentation
2.2. Overpressure Ammonia Removal
2.3. Other Measurements
3. Results
3.1. Changes During the Hydrolysis/Anaerobic Fermentation
3.2. Overpressure Ammonia Stripping
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Banks, C.J.; Wang, Z. Development of a two phase anaerobic digester for the treatment of mixed abattoir wastes. Water Sci. Technol. 1999, 40, 67–76. [Google Scholar] [CrossRef]
- Hansen, K.H.; Angelidaki, I.; Ahring, B.K. Anaerobic digestion of swine manure: Inhibition by ammonia. Water Res. 1998, 32, 5–12. [Google Scholar] [CrossRef]
- Hansen, K.H.; Angelidaki, I.; Ahring, B.K. Improved digestion of swine manure in thermophilic biogas reactors. Water Res. 1999, 33, 1805–1810. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of anaerobic digestion process: a review. Bioresour. Technol. 2008, 99, 4044–4064. [Google Scholar] [CrossRef]
- Ashrafizadeh, S.N.; Khorasani, Z. Ammonia removal from aqueous solutions using hollow-fiber membrane contactors. Chem. Eng. J. 2010, 162, 242–249. [Google Scholar] [CrossRef]
- Siegrist, H.; Batstone, D. Free ammonia and pH inhibition of acetotrophic methanogenesis at mesophilic and thermophilic conditions. In Proceedings of the Ninth World Congress on Anaerobic Digestion, Proceedings Part 1, Antwerpen, Belgium, 2–6 September 2001; pp. 395–400. [Google Scholar]
- Braun, R.; Huber, P.; Meyrath, J. Ammonia toxicity in liquid piggery manure digestion. Biotechnol. Lett. 1981, 3, 159–164. [Google Scholar] [CrossRef]
- Webb, A.R.; Hawkers, F.R. The anaerobic digestion of poultry manure: Variation of gas yield with influent concentration and ammonium-nitrogen levels. Agric. Wastes 1985, 14, 135–156. [Google Scholar] [CrossRef]
- Angelidaki, I.; Ahring, B.K. Anaerobic thermophilic digestion of manure at different ammonia loads: Effect of temperature. Water Res. 1994, 28, 727–731. [Google Scholar] [CrossRef]
- Gallert, A.; Bauer, S.; Winter, J. Effect of ammonia on the anaerobic degradation of protein by a mesophilic and thermophilic biowaste population. Appl. Microbiol. Biotechnol. 1998, 50, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, H.B.; Ahring, B.K. Effect of tryptone and ammonia on the biogas process in continuously stirred tank reactors treating cattle manure. Environ. Technol. 2007, 28, 905–914. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Jahng, D. Enhanced anaerobic digestion of piggery wastewater by ammonia stripping: effects of alkali types. J. Hazard. Mater. 2010, 182, 536–543. [Google Scholar] [CrossRef]
- Wirthensohn, T.; Waeger, F.; Jelinek, L.; Fuchs, W. Ammonium removal from anaerobic digester effluent by ion exchange. Water Sci. Technol. 2009, 60, 201–210. [Google Scholar] [CrossRef]
- Uludag-Demirer, S.; Demirer, G.N.; Chen, S. Ammonia Removal from Anaerobically Digested Dairy Manure by Struvite Precipitation. Process Biochem. 2005, 40, 3667–3674. [Google Scholar] [CrossRef]
- Ahn, Y.H. Sustainable nitrogen elimination biotechnologies: A review. Process Biochem. 2006, 41, 1709–1721. [Google Scholar] [CrossRef]
- Nielsen, H.B.; Angelidaki, I. Strategies for optimizing recovery of the biogas process following ammonia inhibition. Bioresour. Technol. 2008, 99, 7995–8001. [Google Scholar] [CrossRef] [PubMed]
- Kayhanian, M. Ammonia Inhibition in High-Solids Biogasification: An Overview and Practical Solutions. Environ. Technol. 1999, 20, 355–365. [Google Scholar] [CrossRef]
- Angelidaki, I.; Ahring, B.K. Effect of the clay mineral bentonite on ammonia inhibition of anaerobic thermophilic reactors degrading animal waste. Biodegradation 1993, 3, 409–414. [Google Scholar] [CrossRef]
- Krylova, N.I.; Khabiboulline, R.E.; Naumova, R.P.; Nagel, M.A. The influence of ammonium and methods for removal during the anaerobic treatment of poultry manure. J. Chem. Technol. Biotechnol. 1997, 70, 99–105. [Google Scholar] [CrossRef]
- Calli, B.; Mertoglu, B.; Inanc, B.; Yenigun, O. Effects of high free ammonia concentrations on the performances of anaerobic bioreactors. Process Biochem. 2005, 40, 1285–1292. [Google Scholar] [CrossRef]
- Hasanoglu, A.; Romero, J.; Perez, B.; Plaza, A. Ammonia removal from wastewater streams through membrane contactors: Experimental and theoretical analysis of operation parameters and configuration. Chem. Eng. J. 2010, 160, 530–537. [Google Scholar] [CrossRef]
- Anthonisen, A.C.; Loehr, R.C.; Prakasam TB, S.; Srinath, E.G. Inhibition of nitrification by ammonia and nitrous acid. J. Water Pollut. Control Fed. 1976, 48, 835–852. [Google Scholar]
- Lauterböck, A.; Nikolausz, M.; Lv, Z.; Baumgartner, M.; Liebhard, G.; Fuchs, W. Improvement of anaerobic digestion performance by continuous nitrogen removal with a membrane contactor treating a substrate rich in ammonia and sulfide. Bioresour. Technol. 2014, 158, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Kinidi, L.; Tan, I.A.W.; Wahab, N.B.A.; Tamrin, K.F.B.; Hipolito, C.N.; Salleh, S.F. Recent Development in Ammonia Stripping Process for Industrial Wastewater Treatment. Int. J. Chem. Eng. 2018, 2018, 3181087. [Google Scholar] [CrossRef]
- Angelidaki, I.; Ellegaard, L. Codigestion of manure and organic wastes in centralized biogas plants. Appl. Biochem. Biotechnol. 2003, 109, 95–105. [Google Scholar] [CrossRef]
- Smith, F.L.; Harvey, A.H. Avoid Common Pitfalls When Using Henry’s Law. Chem. Eng. Prog. 2007, 103, 33–39. [Google Scholar]
- Ni, J.-Q.; Heber, J.A. Sampling and Measurement of Ammonia Concentration at Animal Facilities - A Review. In The Society for Engineering in Agricultural, Food, and Biological Systems; Paper Number: 01-4090; ASAE: Sacramento, CA, USA, 2001. [Google Scholar]
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 21st ed; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Kolbl, S.; Paloczi, A.; Panjan, J.; Stres, B. Addressing case specific biogas plant tasks: industry oriented methane yields derived from 5 l Automatic Methane Potential Test Systems in batch or semi-continuous tests using realistic inocula, substrate particle sizes and organic loading. Bioresour. Technol. 2014, 153, 180–188. [Google Scholar] [CrossRef] [PubMed]
- SIST EN 14083: Foodstuffs—Determination of Trace Elements—Determination of Lead, Cadmium, Chromium and Molybdenum by Graphite Furnace Atomic Absorption Spectrometry (GFAAS) after Pressure Digestion; Slovenski inštitut za standardizacijo (SIST): Ljubljana, Slovenia, 2003.
- SO 16772: Soil Quality Determination of Mercury in Aqua Regia Soil Extracts with Cold-Vapour Atomic Spectrometry or Cold-Vapour Atomic Fluorescence Spectrometry; International Organization for Standardization: Geneva, Switzerland, 2004.
- ISO 6869: Animal Feeding Stuffs. Determination of the Contents of Calcium, Copper, Iron, Magnesium, Manganese, Potassium, Sodium and Zinc. Method Using Atomic Absorption Spectrometry; International Organization for Standardization: Geneva, Switzerland, 2001.
- ISO 5983-2: Animal Feeding Stuffs—Determination of Nitrogen Content and Calculation of Crude Protein Content—Part 2: Block Digestion and Steam Distillation Method; International Organization for Standardization: Geneva, Switzerland, 2009.
- SIST EN ISO 6865: Animal Feeding Stuffs—Determination of Crude Fibre Content—Method with Intermediate Filtration (ISO 6865:2000); Slovenski inštitut za standardizacijo (SIST): Ljubljana, Slovenia, 2001.
- Commission Directive 98/64/EC Community Methods of Analysis for the Determination of Amino-Acids, Crude Oils and Fats, and Olaquindox in Feeding Stuffs; The Publications Office of the European Union: Luxembourg, 1998.
- CEN/TS 15400: Solid Recovered Fuels. Methods for the Determination of Calorific Value; European Committee for Standardization (CEN): Brussels, Belgium, 2006.
- SIST ISO 13878: Soil Quality—Determination of Total Nitrogen Content after Dry Combustion (Incineration at 900 °C in the CN Analyser and Defining with the TCD Detector); Slovenski inštitut za standardizacijo (SIST): Ljubljana, Slovenia, 1995.
- Polprasert, D. Organic Waste Recycling. In Technology and Management, 2nd ed.; John Wiley & Sons: West Sussex, UK, 1996; 412p. [Google Scholar]
- Regulation (EC) No 1774/2002 of the European Parliament and of the Council: Health Rules Concerning Animal By-Products Not Intended for Human Consumption; The Publications Office of the European Union: Luxemburg, 2002.
- Holm-Nielsen, J.B.; Oleskowicz-Popiel, P. The Biogas Handbook: Science, Production and Applications; Wellinger, A., Murphy, J.D., Baxter, D., Eds.; Woodhead Publishing: Cambridge, UK, 2013; pp. 228–247. ISBN 978-0-85709-741-5. [Google Scholar]
- Yenigün, O.; Demirel, B. Ammonia inhibition in anaerobic digestion: A review. Process Biochem. 2013, 48, 901–911. [Google Scholar] [CrossRef]
- Guštin, S.; Marinšek-Logar, R. Effect of pH, temperature and air flow rate on the continuous ammonia stripping of the anaerobic digestion effluent. Process Saf. Environ. Prot. 2011, 89, 61–66. [Google Scholar] [CrossRef]
- Ortner, M.; Leitzinger, K.; Skupien, S.; Bochmann, G.; Fuchs, W. Efficient anaerobic mono-digestion of N-rich slaughterhouse waste: Influence of ammonia, temperature and trace elements. Bioresour. Technol. 2014, 174, 222–232. [Google Scholar] [CrossRef]
Slaughterhouse Waste | Unit | Result | Slaughterhouse Waste | Unit | Result |
---|---|---|---|---|---|
Dry matter | g/kg | 953 | Na | g/kg | 4.81 |
Moisture | g/kg | 47.2 | Mg | g/kg | 1.52 |
Crude protein | g/kg | 632 | Ca | g/kg | 51.8 |
Crude fiber | g/kg | 27.6 | Ni | mg/kg | <1.00 |
Crude fat | g/kg | 154 | Pb | mg/kg | <5.00 |
Crude ash | g/kg | 155 | Cd | mg/kg | <0.10 |
Gross Energy value | kJ/g | 22.57 | Fe | mg/kg | 214 |
pH | 6.11 | Zn | mg/kg | 89.0 | |
C/N | 4.40 | Mn | mg/kg | 10.0 | |
N | g/kg | 101 | Cu | mg/kg | 8.00 |
P | g/kg | 26.7 | Hg | mg/kg | <0.40 |
K | g/kg | 6.10 | Cr | mg/kg | <5.00 |
Measurement | Unit | Fresh DSW | DSW After 15-Day Hydrolysis | 300 kPa Ammonia Stripping | 600 kPa Ammonia Stripping | 900 kPa Ammonia Stripping |
---|---|---|---|---|---|---|
Gross energy | kJ/g DM | 22.26 ± 6.0 | 21.87 ± 1.1 | - | - | - |
pH | 7.26 ± 0.1 | 6.86 ± 0.01 | 6.08 ± 0.02 | 5.55 ± 0.02 | 5.85 ± 0.01 | |
TIC | mg/L | - | 7627 ± 182 | 4920 ± 174.2 | 8879 ± 187 | 4918 ± 147 |
VOA | mg/L | - | 23,501 ± 126 | 28,840 ± 247 | 46,697 ± 207 | 30,781 ± 198 |
DM % | % | 8.4 ± 0.12 | 8.81 ± 0.22 | 7.88 ± 0.30 | 7.55 ± 0.44 | 7.35 ± 0.17 |
ODM % | % | 6.8 ± 0.20 | 6.62 ± 0.15 | 6.63 ± 0.4 | 6.40 ± 0.43 | 6.28 ± 0.37 |
ODM loss | ||||||
C/N | ratio | 4.38 ± 0.04 | 4.22 ± 0.06 | 3.27 ± 0.02 | 3.42 ± 0.05 | 3.17 ± 0.03 |
N total | mg/L | 21,746 ± 3 | 15,546 ± 113 | 14,437 ± 134 | 13,687± 137 | 12,683 ± 90 |
NH4-N | mg/L | 189 ± 39 | 8789 ± 39 | 8038 ± 114 | 6694 ± 130 | 5887 ± 111 |
NH4-N/N total in DSW | % | 0.9 | 56.5 | 55.7 | 48.9 | 46.4 |
Stripped NH3-N | mg/L | 98.0 | 519.7 | 1138.1 | ||
Relative N removal: | ||||||
Stripped NH3-N/N total | % | 0.7 | 3.8 | 9.0 | ||
Stripped NH3-N/NH4-N | % | 1.2 | 7.8 | 14.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zver, A.; Bernik, R.; Mihelič, R. Effect of Pressure on the Removal of NH3 from Hydrolyzed and Pre-Fermented Slaughterhouse Waste for Better Biomethanization. Energies 2019, 12, 1868. https://doi.org/10.3390/en12101868
Zver A, Bernik R, Mihelič R. Effect of Pressure on the Removal of NH3 from Hydrolyzed and Pre-Fermented Slaughterhouse Waste for Better Biomethanization. Energies. 2019; 12(10):1868. https://doi.org/10.3390/en12101868
Chicago/Turabian StyleZver, Aleš, Rajko Bernik, and Rok Mihelič. 2019. "Effect of Pressure on the Removal of NH3 from Hydrolyzed and Pre-Fermented Slaughterhouse Waste for Better Biomethanization" Energies 12, no. 10: 1868. https://doi.org/10.3390/en12101868
APA StyleZver, A., Bernik, R., & Mihelič, R. (2019). Effect of Pressure on the Removal of NH3 from Hydrolyzed and Pre-Fermented Slaughterhouse Waste for Better Biomethanization. Energies, 12(10), 1868. https://doi.org/10.3390/en12101868