The Crucial Role of Quaternary Mixtures of Active Layer in Organic Indoor Solar Cells
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sharma, H.; Haque, A.; Jaffery, Z.A. Solar energy harvesting wireless sensor network nodes: A survey. J. Renew. Sustain. Energy 2018, 10, 23704. [Google Scholar] [CrossRef]
- Varghese, B.; John, N.E.; Sreelal, S.; Gopal, K. Design and development of an RF energy harvesting wireless sensor node (EH-WSN) for aerospace applications. Procedia Comput. Sci. 2016, 93, 230–237. [Google Scholar] [CrossRef]
- Rashidzadeh, H.; Kasargod, P.S.; Supon, T.M.; Rashidzadeh, R.; Ahmadi, M. Energy harvesting for IoT sensors utilizing MEMS technology. In Proceedings of the 2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Vancouver, BC, Canada, 5–18 May 2016; pp. 1–4. [Google Scholar]
- Lu, L.; Zheng, T.; Wu, Q.; Schneider, A.M.; Zhao, D.; Yu, L. Recent advances in bulk heterojunction polymer solar cells. Chem. Rev. 2015, 115, 12666–12731. [Google Scholar] [CrossRef] [PubMed]
- Chiechi, R.C.; Havenith, R.W.A.; Hummelen, J.C.; Koster, L.J.A.; Loi, M.A. Modern plastic solar cells: Materials, mechanisms and modeling. Mater. Today 2013, 16, 281–289. [Google Scholar] [CrossRef]
- Chamberlain, G.A. Organic solar cells: A review. Sol. Cells 1983, 8, 47–83. [Google Scholar] [CrossRef]
- Vincent, P.; Shin, S.-C.; Goo, J.S.; You, Y.-J.; Cho, B.; Lee, S.; Lee, D.-W.; Kwon, S.R.; Chung, K.-B.; Lee, J.-J.; et al. Indoor-type photovoltaics with organic solar cells through optimal design. Dye. Pigment. 2018, 159, 306–313. [Google Scholar] [CrossRef]
- Shin, S.-C.; Koh, C.W.; Vincent, P.; Goo, J.S.; Bae, J.-H.; Lee, J.-J.; Shin, C.; Kim, H.; Woo, H.Y.; Shim, J.W. Ultra-thick semi-crystalline photoactive donor polymer for efficient indoor organic photovoltaics. Nano Energy 2019, 58, 466–475. [Google Scholar] [CrossRef]
- Cheng, P.; Li, G.; Zhan, X.; Yang, Y. Next-generation organic photovoltaics based on non-fullerene acceptors. Nat. Photonics 2018, 12, 131–142. [Google Scholar] [CrossRef]
- Steim, R.; Ameri, T.; Schilinsky, P.; Waldauf, C.; Dennler, G.; Scharber, M.; Brabec, C.J. Organic photovoltaics for low light applications. Sol. Energy Mater. Sol. Cells 2011, 95, 3256–3261. [Google Scholar] [CrossRef]
- Yang, S.-S.; Hsieh, Z.-C.; Keshtov, M.L.; Sharma, G.D.; Chen, F.-C. Toward high-performance polymer photovoltaic devices for low-power indoor applications. Sol. RRL 2017, 1, 1700174. [Google Scholar] [CrossRef]
- Cutting, C.L.; Bag, M.; Venkataraman, D. Indoor light recycling: A new home for organic photovoltaics. J. Mater. Chem. C 2016, 4, 10367–10370. [Google Scholar] [CrossRef]
- Yin, H.; Ho, J.K.W.; Cheung, S.H.; Yan, R.J.; Chiu, K.L.; Hao, X.; So, S.K. Designing a ternary photovoltaic cell for indoor light harvesting with a power conversion efficiency exceeding 20%. J. Mater. Chem. A 2018, 6, 8579–8585. [Google Scholar] [CrossRef]
- Cheng, P.; Wang, J.; Zhang, Q.; Huang, W.; Zhu, J.; Wang, R.; Chang, S.-Y.; Sun, P.; Meng, L.; Zhao, H.; et al. Unique energy alignments of a ternary material system toward high-performance organic photovoltaics. Adv. Mater. 2018, 30, 1801501. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.; Wang, R.; Zhu, J.; Huang, W.; Chang, S.-Y.; Meng, L.; Sun, P.; Cheng, H.-W.; Qin, M.; Zhu, C.; et al. Ternary system with controlled structure: A New strategy toward efficient organic photovoltaics. Adv. Mater. 2018, 30, 1705243. [Google Scholar] [CrossRef]
- Cheng, P.; Zhang, M.; Lau, T.-K.; Wu, Y.; Jia, B.; Wang, J.; Yan, C.; Qin, M.; Lu, X.; Zhan, X. Realizing small energy loss of 0.55 eV, high open-circuit voltage >1 v and high efficiency >10% in fullerene-free polymer solar cells via energy driver. Adv. Mater. 2017, 29, 1605216. [Google Scholar] [CrossRef] [PubMed]
- Nam, M.; Cha, M.; Lee, H.H.; Hur, K.; Lee, K.-T.; Yoo, J.; Han, I.K.; Kwon, S.J.; Ko, D.-H. Long-term efficient organic photovoltaics based on quaternary bulk heterojunctions. Nat. Commun. 2017, 8, 14068. [Google Scholar] [CrossRef] [PubMed]
- Monestier, F.; Pandey, A.K.; Simon, J.-J.; Torchio, P.; Escoubas, L.; Nunzi, J.-M. Optical modeling of the ultimate efficiency of pentacene: N, N′-ditridecylperylene-3, 4, 9, 10-tetracarboxylic diimide–blend solar cells. J. Appl. Phys. 2007, 102, 34512. [Google Scholar] [CrossRef]
- Monestier, F.; Simon, J.-J.; Torchio, P.; Escoubas, L.; Ratier, B.; Hojeij, W.; Lucas, B.; Moliton, A.; Cathelinaud, M.; Defranoux, C.; et al. Optical modeling of organic solar cells based on CuPc and C60. Appl. Opt. 2008, 47, C251–C256. [Google Scholar] [CrossRef]
- Duche, D.; Torchio, P.; Escoubas, L.; Monestier, F.; Simon, J.-J.; Flory, F.; Mathian, G. Improving light absorption in organic solar cells by plasmonic contribution. Sol. Energy Mater. Sol. Cells 2009, 93, 1377–1382. [Google Scholar] [CrossRef]
- Vincent, P.; Bae, J.-H.; Kim, H. Efficiently-designed hybrid tandem photovoltaic with organic and inorganic single cells. J. Korean Phys. Soc. 2016, 68, 1094–1098. [Google Scholar] [CrossRef]
- Vincent, P.; Song, D.-S.; Kwon, H.B.; Kim, D.-K.; Jung, J.-H.; Kwon, J.-H.; Choe, E.; Kim, Y.-R.; Kim, H.; Bae, J.-H. Towards maximizing the haze effect of electrodes for high efficiency hybrid tandem solar cell. Appl. Surf. Sci. 2018, 432, 262–265. [Google Scholar] [CrossRef]
- Vincent, P.; Song, D.-S.; Jung, J.-H.; Kwon, J.-H.; Kwon, H.B.; Kim, D.-K.; Choe, E.; Kim, Y.-R.; Kim, H.; Bae, J.-H. Dependence of the hybrid solar cell efficiency on the thickness of ZnO nanoparticle optical spacer interlayer. Mol. Cryst. Liq. Cryst. 2017, 653, 254–259. [Google Scholar] [CrossRef]
- Shin, S.-C.; Vincent, P.; Bae, J.-H.; Lee, J.J.; Nam, M.; Ko, D.-H.; Kim, H.; Shim, J.W. Quaternary indoor organic photovoltaic device demonstrating panchromatic absorption and power conversion efficiency of 10%. Dye. Pigment. 2019, 163, 48–54. [Google Scholar] [CrossRef]
- Vincent, P.; Shim, J.W.; Bae, J.-H.; Kim, H. Optimizing the efficiency of organic solar cell under indoor light via controlling optical absorption. Mol. Cryst. Liq. Cryst. 2018, 660, 85–89. [Google Scholar] [CrossRef]
- Khlyabich, P.P.; Burkhart, B.; Thompson, B.C. Efficient ternary blend bulk heterojunction solar cells with tunable open-circuit voltage. J. Am. Chem. Soc. 2011, 133, 14534–14537. [Google Scholar] [CrossRef]
- Heidel, T.D.; Hochbaum, D.; Sussman, J.M.; Singh, V.; Bahlke, M.E.; Hiromi, I.; Lee, J.; Baldo, M.A. Reducing recombination losses in planar organic photovoltaic cells using multiple step charge separation. J. Appl. Phys. 2011, 109, 104502. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vincent, P.; Shim, J.W.; Jang, J.; Kang, I.M.; Lang, P.; Bae, J.-H.; Kim, H. The Crucial Role of Quaternary Mixtures of Active Layer in Organic Indoor Solar Cells. Energies 2019, 12, 1838. https://doi.org/10.3390/en12101838
Vincent P, Shim JW, Jang J, Kang IM, Lang P, Bae J-H, Kim H. The Crucial Role of Quaternary Mixtures of Active Layer in Organic Indoor Solar Cells. Energies. 2019; 12(10):1838. https://doi.org/10.3390/en12101838
Chicago/Turabian StyleVincent, Premkumar, Jae Won Shim, Jaewon Jang, In Man Kang, Philippe Lang, Jin-Hyuk Bae, and Hyeok Kim. 2019. "The Crucial Role of Quaternary Mixtures of Active Layer in Organic Indoor Solar Cells" Energies 12, no. 10: 1838. https://doi.org/10.3390/en12101838
APA StyleVincent, P., Shim, J. W., Jang, J., Kang, I. M., Lang, P., Bae, J.-H., & Kim, H. (2019). The Crucial Role of Quaternary Mixtures of Active Layer in Organic Indoor Solar Cells. Energies, 12(10), 1838. https://doi.org/10.3390/en12101838