The Crucial Role of Quaternary Mixtures of Active Layer in Organic Indoor Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sharma, H.; Haque, A.; Jaffery, Z.A. Solar energy harvesting wireless sensor network nodes: A survey. J. Renew. Sustain. Energy 2018, 10, 23704. [Google Scholar] [CrossRef][Green Version]
- Varghese, B.; John, N.E.; Sreelal, S.; Gopal, K. Design and development of an RF energy harvesting wireless sensor node (EH-WSN) for aerospace applications. Procedia Comput. Sci. 2016, 93, 230–237. [Google Scholar] [CrossRef]
- Rashidzadeh, H.; Kasargod, P.S.; Supon, T.M.; Rashidzadeh, R.; Ahmadi, M. Energy harvesting for IoT sensors utilizing MEMS technology. In Proceedings of the 2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Vancouver, BC, Canada, 5–18 May 2016; pp. 1–4. [Google Scholar]
- Lu, L.; Zheng, T.; Wu, Q.; Schneider, A.M.; Zhao, D.; Yu, L. Recent advances in bulk heterojunction polymer solar cells. Chem. Rev. 2015, 115, 12666–12731. [Google Scholar] [CrossRef] [PubMed]
- Chiechi, R.C.; Havenith, R.W.A.; Hummelen, J.C.; Koster, L.J.A.; Loi, M.A. Modern plastic solar cells: Materials, mechanisms and modeling. Mater. Today 2013, 16, 281–289. [Google Scholar] [CrossRef]
- Chamberlain, G.A. Organic solar cells: A review. Sol. Cells 1983, 8, 47–83. [Google Scholar] [CrossRef]
- Vincent, P.; Shin, S.-C.; Goo, J.S.; You, Y.-J.; Cho, B.; Lee, S.; Lee, D.-W.; Kwon, S.R.; Chung, K.-B.; Lee, J.-J.; et al. Indoor-type photovoltaics with organic solar cells through optimal design. Dye. Pigment. 2018, 159, 306–313. [Google Scholar] [CrossRef]
- Shin, S.-C.; Koh, C.W.; Vincent, P.; Goo, J.S.; Bae, J.-H.; Lee, J.-J.; Shin, C.; Kim, H.; Woo, H.Y.; Shim, J.W. Ultra-thick semi-crystalline photoactive donor polymer for efficient indoor organic photovoltaics. Nano Energy 2019, 58, 466–475. [Google Scholar] [CrossRef]
- Cheng, P.; Li, G.; Zhan, X.; Yang, Y. Next-generation organic photovoltaics based on non-fullerene acceptors. Nat. Photonics 2018, 12, 131–142. [Google Scholar] [CrossRef]
- Steim, R.; Ameri, T.; Schilinsky, P.; Waldauf, C.; Dennler, G.; Scharber, M.; Brabec, C.J. Organic photovoltaics for low light applications. Sol. Energy Mater. Sol. Cells 2011, 95, 3256–3261. [Google Scholar] [CrossRef]
- Yang, S.-S.; Hsieh, Z.-C.; Keshtov, M.L.; Sharma, G.D.; Chen, F.-C. Toward high-performance polymer photovoltaic devices for low-power indoor applications. Sol. RRL 2017, 1, 1700174. [Google Scholar] [CrossRef]
- Cutting, C.L.; Bag, M.; Venkataraman, D. Indoor light recycling: A new home for organic photovoltaics. J. Mater. Chem. C 2016, 4, 10367–10370. [Google Scholar] [CrossRef]
- Yin, H.; Ho, J.K.W.; Cheung, S.H.; Yan, R.J.; Chiu, K.L.; Hao, X.; So, S.K. Designing a ternary photovoltaic cell for indoor light harvesting with a power conversion efficiency exceeding 20%. J. Mater. Chem. A 2018, 6, 8579–8585. [Google Scholar] [CrossRef]
- Cheng, P.; Wang, J.; Zhang, Q.; Huang, W.; Zhu, J.; Wang, R.; Chang, S.-Y.; Sun, P.; Meng, L.; Zhao, H.; et al. Unique energy alignments of a ternary material system toward high-performance organic photovoltaics. Adv. Mater. 2018, 30, 1801501. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.; Wang, R.; Zhu, J.; Huang, W.; Chang, S.-Y.; Meng, L.; Sun, P.; Cheng, H.-W.; Qin, M.; Zhu, C.; et al. Ternary system with controlled structure: A New strategy toward efficient organic photovoltaics. Adv. Mater. 2018, 30, 1705243. [Google Scholar] [CrossRef]
- Cheng, P.; Zhang, M.; Lau, T.-K.; Wu, Y.; Jia, B.; Wang, J.; Yan, C.; Qin, M.; Lu, X.; Zhan, X. Realizing small energy loss of 0.55 eV, high open-circuit voltage >1 v and high efficiency >10% in fullerene-free polymer solar cells via energy driver. Adv. Mater. 2017, 29, 1605216. [Google Scholar] [CrossRef] [PubMed]
- Nam, M.; Cha, M.; Lee, H.H.; Hur, K.; Lee, K.-T.; Yoo, J.; Han, I.K.; Kwon, S.J.; Ko, D.-H. Long-term efficient organic photovoltaics based on quaternary bulk heterojunctions. Nat. Commun. 2017, 8, 14068. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Monestier, F.; Pandey, A.K.; Simon, J.-J.; Torchio, P.; Escoubas, L.; Nunzi, J.-M. Optical modeling of the ultimate efficiency of pentacene: N, N′-ditridecylperylene-3, 4, 9, 10-tetracarboxylic diimide–blend solar cells. J. Appl. Phys. 2007, 102, 34512. [Google Scholar] [CrossRef]
- Monestier, F.; Simon, J.-J.; Torchio, P.; Escoubas, L.; Ratier, B.; Hojeij, W.; Lucas, B.; Moliton, A.; Cathelinaud, M.; Defranoux, C.; et al. Optical modeling of organic solar cells based on CuPc and C60. Appl. Opt. 2008, 47, C251–C256. [Google Scholar] [CrossRef]
- Duche, D.; Torchio, P.; Escoubas, L.; Monestier, F.; Simon, J.-J.; Flory, F.; Mathian, G. Improving light absorption in organic solar cells by plasmonic contribution. Sol. Energy Mater. Sol. Cells 2009, 93, 1377–1382. [Google Scholar] [CrossRef]
- Vincent, P.; Bae, J.-H.; Kim, H. Efficiently-designed hybrid tandem photovoltaic with organic and inorganic single cells. J. Korean Phys. Soc. 2016, 68, 1094–1098. [Google Scholar] [CrossRef]
- Vincent, P.; Song, D.-S.; Kwon, H.B.; Kim, D.-K.; Jung, J.-H.; Kwon, J.-H.; Choe, E.; Kim, Y.-R.; Kim, H.; Bae, J.-H. Towards maximizing the haze effect of electrodes for high efficiency hybrid tandem solar cell. Appl. Surf. Sci. 2018, 432, 262–265. [Google Scholar] [CrossRef]
- Vincent, P.; Song, D.-S.; Jung, J.-H.; Kwon, J.-H.; Kwon, H.B.; Kim, D.-K.; Choe, E.; Kim, Y.-R.; Kim, H.; Bae, J.-H. Dependence of the hybrid solar cell efficiency on the thickness of ZnO nanoparticle optical spacer interlayer. Mol. Cryst. Liq. Cryst. 2017, 653, 254–259. [Google Scholar] [CrossRef]
- Shin, S.-C.; Vincent, P.; Bae, J.-H.; Lee, J.J.; Nam, M.; Ko, D.-H.; Kim, H.; Shim, J.W. Quaternary indoor organic photovoltaic device demonstrating panchromatic absorption and power conversion efficiency of 10%. Dye. Pigment. 2019, 163, 48–54. [Google Scholar] [CrossRef]
- Vincent, P.; Shim, J.W.; Bae, J.-H.; Kim, H. Optimizing the efficiency of organic solar cell under indoor light via controlling optical absorption. Mol. Cryst. Liq. Cryst. 2018, 660, 85–89. [Google Scholar] [CrossRef]
- Khlyabich, P.P.; Burkhart, B.; Thompson, B.C. Efficient ternary blend bulk heterojunction solar cells with tunable open-circuit voltage. J. Am. Chem. Soc. 2011, 133, 14534–14537. [Google Scholar] [CrossRef]
- Heidel, T.D.; Hochbaum, D.; Sussman, J.M.; Singh, V.; Bahlke, M.E.; Hiromi, I.; Lee, J.; Baldo, M.A. Reducing recombination losses in planar organic photovoltaic cells using multiple step charge separation. J. Appl. Phys. 2011, 109, 104502. [Google Scholar] [CrossRef][Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vincent, P.; Shim, J.W.; Jang, J.; Kang, I.M.; Lang, P.; Bae, J.-H.; Kim, H. The Crucial Role of Quaternary Mixtures of Active Layer in Organic Indoor Solar Cells. Energies 2019, 12, 1838. https://doi.org/10.3390/en12101838
Vincent P, Shim JW, Jang J, Kang IM, Lang P, Bae J-H, Kim H. The Crucial Role of Quaternary Mixtures of Active Layer in Organic Indoor Solar Cells. Energies. 2019; 12(10):1838. https://doi.org/10.3390/en12101838
Chicago/Turabian StyleVincent, Premkumar, Jae Won Shim, Jaewon Jang, In Man Kang, Philippe Lang, Jin-Hyuk Bae, and Hyeok Kim. 2019. "The Crucial Role of Quaternary Mixtures of Active Layer in Organic Indoor Solar Cells" Energies 12, no. 10: 1838. https://doi.org/10.3390/en12101838