Kinetic Study on the Pyrolysis of Medium Density Fiberboard: Effects of Secondary Charring Reactions
Abstract
:1. Introduction
2. Experimental and Kinetic Modeling
2.1. Experimental
2.1.1. MDF Sample
2.1.2. TGA Tests
2.2. Kinetic Modeling
2.2.1. Kinetic Reaction Model
2.2.2. Optimization Method—Differential Evolution Algorithm
2.2.3. Estimation of Initial Guesses of Model Parameters for DE
3. Results and Discussion
3.1. Thermogravimetric Analysis
3.2. Estimated Initial Guess of Model Parameters
3.3. Model Parameter Optimization by DE
3.4. Effects of Secondary Charring Reactions on the Components and Products
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. Forestry Production and Trade. 2018. Available online: http://www.fao.org/faostat/en/#data/FO (accessed on 16 September 2018).
- Lubis, M.A.R.; Park, B.D.; Woo, Y.D. Characterization of recycled fibers from medium-density fiberboard for its recycling. J. Clean. Prod. 2018, 202, 456–464. [Google Scholar]
- Kabir, M.J.; Chowdhury, A.A.; Rasul, M.G. Pyrolysis of Municipal Green Waste: A Modelling, Simulation and Experimental Analysis. Energies 2015, 8, 7522–7541. [Google Scholar] [CrossRef][Green Version]
- Bo, N.; Chen, Z.; Xu, Z. Application of pyrolysis to recycling organics from waste tantalum capacitors. J. Hazard. Mater. 2017, 335, 39–46. [Google Scholar]
- Mishra, G.; Kumar, J.; Bhaskar, T. Kinetic studies on the pyrolysis of pinewood. Bioresour. Technol. 2015, 182, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Si, L.; Fan, Y.; Wang, Y.; Sun, L.; Li, B.; Xue, C.; Hou, H. Thermal degradation behavior of collagen from sea cucumber (Stichopus japonicus) using TG-FTIR analysis. Thermochim. Acta 2018, 659, 166–171. [Google Scholar] [CrossRef]
- Rong, H.; Wang, T.; Zhou, M.; Wang, H.; Hou, H.; Xue, Y. Combustion Characteristics and Slagging during Co-Combustion of Rice Husk and Sewage Sludge Blends. Energies 2017, 10, 438. [Google Scholar] [CrossRef]
- Hashim, R.; Sulaiman, O.; Kumar, R.N.; Tamyez, P.F.; Murphy, R.J.; Ali, Z. Physical and mechanical properties of flame retardant urea formaldehyde medium density fiberboard. J. Mater. Process. Technol. 2009, 209, 635–640. [Google Scholar] [CrossRef]
- Yorulmaz, S.Y.; Atimtay, A.T. Investigation of combustion kinetics of treated and untreated waste wood samples with thermogravimetric analysis. Fuel Process. Technol. 2009, 90, 939–946. [Google Scholar] [CrossRef]
- Han, T.U.; Kim, Y.M.; Watanabe, C.; Teramae, N.; Park, Y.K.; Kim, S.; Lee, Y. Analytical pyrolysis properties of waste medium-density fiberboard and particle board. J. Ind. Eng. Chem. 2015, 32, 345–352. [Google Scholar] [CrossRef]
- Shafizadeh, F.; Chin, P. Thermal deterioration of wood. ACS Symp. Ser. 1977, 43, 57–81. [Google Scholar]
- Bastiaans, R.J.M.; Toland, A.; Holten, A.; Goey, L.P.H.D. Kinetics of co release from bark and medium density fibreboard pyrolysis. Biomass Bioenergy 2010, 34, 771–779. [Google Scholar] [CrossRef]
- Koufopanos, C.A.; Maschio, G.; Lucchesi, A. Kinetic modeling of the pyrolysis of biomass and biomass components. Can. J. Chem. Eng. 1989, 67, 75–84. [Google Scholar] [CrossRef]
- Miller, R.S.; Bellan, J. A generalized biomass pyrolysis model based on superimposed cellulose, hemicellulose and lignin kinetics. Combust. Sci. Technol. 1997, 126, 97–137. [Google Scholar] [CrossRef]
- Anca-Couce, A. Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis. Prog. Energy Combust. Sci. 2016, 53, 41–79. [Google Scholar] [CrossRef]
- Manya, J.J.; Velo, E.; Puigjaner, L. Kinetics of biomass pyrolysis: A reformulated three-parallel-reactions model. Ind. Eng. Chem. Res. 2003, 42, 434–441. [Google Scholar] [CrossRef]
- Barneto, A.G.; Carmona, J.A.; Alfonso, J.E.; Serrano, R.S. Simulation of the thermogravimetry analysis of three non-wood pulps. Bioresour. Technol. 2010, 101, 3220–3229. [Google Scholar] [CrossRef] [PubMed]
- Liden, A.G.; Berruti, F.; Scott, D.S. A kinetic model for the production of liquids from the flash pyrolysis of biomass. Chem. Eng. Commun. 1988, 65, 207–221. [Google Scholar] [CrossRef]
- Li, K.Y.; Huang, X.; Fleischmann, C.; Rein, G.; Ji, J. Pyrolysis of medium-density fiberboard: Optimized search for kinetics scheme and parameters via a genetic algorithm driven by Kissinger’s method. Energy Fuels 2014, 28, 6130–6139. [Google Scholar] [CrossRef]
- White, J.E.; Catallo, W.J.; Legendre, B.L. Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies. J. Anal. Appl. Pyrol. 2011, 91, 1–33. [Google Scholar] [CrossRef]
- Neves, D.; Thunman, H.; Matos, A.; Tarelho, L.; Gomez-Barea, A. Characterization and prediction of biomass pyrolysis products. Prog. Energy Combust. Sci. 2011, 37, 611–630. [Google Scholar] [CrossRef]
- Santaniello, R.; Galgano, A.; Blasi, C.D. Coupling transport phenomena and tar cracking in the modeling of microwave-induced pyrolysis of wood. Fuel 2012, 96, 355–373. [Google Scholar] [CrossRef]
- Anca-Couce, A.; Mehrabian, R.; Scharler, R.; Obernberger, I. Kinetic scheme of biomass pyrolysis considering secondary charring reactions. Energy Convers. Manag. 2014, 87, 687–696. [Google Scholar] [CrossRef]
- Zhai, M.; Wang, X.; Zhang, Y.; Dong, P.; Qi, G.; Huang, Y. Characteristics of rice husk tar secondary thermal cracking. Energy 2015, 93, 1321–1327. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, C.; Chaos, M.; Chen, R.; Lu, S. Estimation of beech pyrolysis kinetic parameters by shuffled complex evolution. Bioresour. Technol. 2016, 200, 658–665. [Google Scholar] [CrossRef] [PubMed]
- Khiari, B.; Jeguirim, M. Pyrolysis of Grape Marc from Tunisian Wine Industry: Feedstock Characterization, Thermal Degradation and Kinetic Analysis. Energies 2018, 11, 730. [Google Scholar] [CrossRef]
- Jo, J.H.; Kim, S.S.; Shim, J.W.; Lee, Y.E.; Yoo, Y.S. Pyrolysis Characteristics and Kinetics of Food Wastes. Energies 2017, 10, 1191. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Storn, R. On the usage of differential evolution for function optimization. In 1996 Biennial Conference of the North American Fuzzy Information Processing Society-NAFIPS; IEEE Press: Piscataway, NJ, USA, 1996; pp. 519–523. ISBN 0780332261. [Google Scholar]
- Khawam, A.; Flanagan, D.R. Complementary use of model-free and modelistic methods in the analysis of solid-state kinetics. J. Phys. Chem. B 2005, 109, 10073–10080. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Lu, S.; Zhang, Y.; Lo, S. Pyrolysis study of waste cable hose with thermogravimetry/Fourier transform infrared/mass spectrometry analysis. Energy Convers. Manag. 2017, 153, 83–92. [Google Scholar] [CrossRef]
- Doyle, C.D. Estimating isothermal life from thermogravimetric data. J. Appl. Polym. Sci. 1962, 6, 639–642. [Google Scholar] [CrossRef]
- Starink, M.J. Activation energy determination for linear heating experiments: Deviations due to neglecting the low temperature end of the temperature integral. J. Mater. Sci. 2007, 42, 483–489. [Google Scholar] [CrossRef]
- Starink, M. The determination of activation energy from linear heating rate experiments: A comparison of the accuracy of isoconversion methods. Thermochim. Acta 2003, 404, 163–176. [Google Scholar] [CrossRef]
- Martín-Lara, M.A.; Blázquez, G.; Zamora, M.C.; Calero, M. Kinetic modelling of torrefaction of olive tree pruning. Appl. Therm. Eng. 2017, 113, 1410–1418. [Google Scholar] [CrossRef]
- Ferreira, S.D.; Altafini, C.R.; Perondi, D.; Godinho, M. Pyrolysis of Medium Density Fiberboard (MDF) wastes in a screw reactor. Energy Convers. Manag. 2015, 92, 223–233. [Google Scholar] [CrossRef]
- Amutio, M.; Lopez, G.; Alvarez, J.; Moreira, R.; Duarte, G.; Nunes, J.; Olazar, M.; Bilbao, J. Pyrolysis kinetics of forestry residues from the Portuguese Central Inland Region. Chem. Eng. Res. Des. 2013, 91, 2682–2690. [Google Scholar] [CrossRef]
- Kercher, A.K.; Nagle, D.C. TGA modeling of the thermal decomposition of CCA treated lumber waste. Wood Sci. Technol. 2001, 35, 325–341. [Google Scholar] [CrossRef]
- Xu, L.; Jiang, Y.; Wang, L. Thermal decomposition of rape straw: Pyrolysis modeling and kinetic study via particle swarm optimization. Energy Convers. Manag. 2017, 146, 124–133. [Google Scholar] [CrossRef]
- Ma, Z.Q.; Chen, D.Y.; Gu, J.; Bao, B.F.; Zhang, Q.S. Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA-FTIR and model-free integral methods. Energy Convers. Manag. 2015, 89, 251–259. [Google Scholar] [CrossRef]
- Chen, X.; Liu, L.; Zhang, L.; Zhao, Y.; Zhang, Z.; Xie, X.; Qiu, P.; Chen, G.; Pei, J. Thermogravimetric analysis and kinetics of the co-pyrolysis of coal blends with corn stalks. Thermochim. Acta 2018, 659, 59–65. [Google Scholar] [CrossRef]
- Yao, Z.; Ma, X.; Wu, Z.; Yao, T. TGA–FTIR analysis of co-pyrolysis characteristics of hydrochar and paper sludge. J. Anal. Appl. Pyrol. 2017, 123, 40–48. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, J.; Shao, J.; Ren, S. Characterisation and model fitting kinetic analysis of coal/biomass co-combustion. Thermochim. Acta 2014, 591, 68–74. [Google Scholar] [CrossRef]
- Munir, S.; Daood, S.; Nimmo, W.; Cunliffe, A.; Gibbs, B. Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres. Bioresour. Technol. 2009, 100, 1413–1418. [Google Scholar] [CrossRef] [PubMed]
- Hao, Q.L.; Bo-Lun, L.I.; Liu, L.; Zhang, Z.B.; Dou, B.J.; Wang, C. Effect of potassium on pyrolysis of rice husk and its components. J. Fuel Chem. Technol. 2015, 43, 34–41. [Google Scholar] [CrossRef]
- Trendewicz, A.; Evans, R.; Dutta, A.; Sykes, R.; Carpenter, D.; Braun, R. Evaluating the effect of potassium on cellulose pyrolysis reaction kinetics. Biomass Bioenergy 2015, 74, 15–25. [Google Scholar] [CrossRef][Green Version]
Feedstock | Proximate Analysis (wt %) | Ultimate Analysis (wt %) | |||||||
---|---|---|---|---|---|---|---|---|---|
MDF | Moisture | Ash | Volatiles | Fixed carbon | C | H | O a | N | S |
- | 8.28 | 4.69 | 81.2 | 5.83 | 44.96 | 6.26 | 44.87 | 3.35 | 0.56 |
Model I | Model II | ||
---|---|---|---|
1 *: | 1 *: | ||
2 *: |
α | FWO | KAS | Starink | Average Value | |||||
---|---|---|---|---|---|---|---|---|---|
E (kJ/mol) | R2 | E (kJ/mol) | R2 | E (kJ/mol) | R2 | E (kJ/mol) | lnA | R2 | |
0.05 | 65.94 | 0.96 | 63.89 | 0.95 | 64.06 | 0.95 | 64.63 | 22.82 | 0.95 |
0.1 | 80.66 | 0.90 | 70.06 | 0.86 | 71.19 | 0.86 | 76.30 | 24.81 | 0.87 |
0.2 | 152.10 | 0.99 | 150.86 | 0.99 | 151.10 | 0.99 | 151.36 | 37.62 | 0.99 |
0.3 | 145.11 | 0.99 | 143.06 | 0.99 | 143.33 | 0.99 | 143.84 | 36.33 | 0.99 |
0.4 | 154.83 | 0.99 | 152.97 | 0.99 | 153.24 | 0.99 | 153.68 | 38.01 | 0.99 |
0.5 | 165.71 | 0.99 | 164.15 | 0.99 | 164.43 | 0.99 | 164.77 | 39.90 | 0.99 |
0.6 | 168.79 | 0.99 | 167.17 | 0.99 | 167.45 | 0.99 | 167.80 | 40.42 | 0.99 |
0.7 | 170.73 | 0.99 | 169.04 | 0.99 | 169.32 | 0.99 | 169.70 | 40.74 | 0.99 |
0.8 | 170.30 | 0.99 | 168.38 | 0.99 | 168.68 | 0.99 | 169.12 | 40.65 | 0.99 |
0.9 | 280.67 | 0.97 | 283.51 | 0.96 | 283.75 | 0.96 | 282.64 | 60.01 | 0.96 |
Mean value (0.05–0.1) | 73.30 | 0.93 | 66.98 | 0.90 | 67.63 | 0.91 | 69.30 | 23.82 | 0.92 |
Mean value (0.1–0.2) | 116.38 | 0.95 | 110.46 | 0.93 | 111.15 | 0.93 | 112.66 | 31.21 | 0.94 |
Mean value (0.2–0.8) | 160.08 | 0.99 | 159.38 | 0.99 | 159.65 | 0.99 | 159.70 | 39.10 | 0.99 |
Mean value (0.8–0.9) | 225.49 | 0.98 | 225.95 | 0.98 | 226.22 | 0.98 | 225.88 | 50.33 | 0.98 |
Heating Rate (°C/min) | First Stage α/T (°C) | Second Stage α/T (°C) | Third Stage α/T (°C) | Forth Stage α/T (°C) |
---|---|---|---|---|
10 | 0–0.1/25–214 | 0.1–0.2/214–274 | 0.2–0.8/274–363 | 0.8–1.0/363–800 |
20 | 0–0.1/25–220 | 0.1–0.2/220–285 | 0.2–0.8/285–375 | 0.8–1.0/375–800 |
30 | 0–0.1/25–231 | 0.1–0.2/231–292 | 0.2–0.8/292–382 | 0.8–1.0/382–800 |
40 | 0–0.1/25–234 | 0.1–0.2/234–296 | 0.2–0.8/296–389 | 0.8–1.0/389–800 |
Reaction Model [29,41] | 10 °C/min | 20 °C/min | 30 °C/min | 40 °C/min | Mean Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
E (kJ/mol) | R2 | E (kJ/mol) | R2 | E (kJ/mol) | R2 | E (kJ/mol) | R2 | E (kJ/mol) | R2 | ||
Reaction order | |||||||||||
0th-order | g(α) = α | 32.83 | 0.99 | 35.13 | 0.99 | 34.06 | 0.99 | 33.43 | 0.99 | 33.86 | 0.99 |
1st-order | g(α) = −ln(1 − α) | 66.67 | 0.99 | 70.92 | 0.99 | 69.01 | 0.99 | 68.20 | 0.99 | 68.7 | 0.99 |
2nd-order | g(α) = [1 − (1 − α)−1)]/( −1) | 115.9 | 0.98 | 122.96 | 0.98 | 119.8 | 0.97 | 118.81 | 0.98 | 119.37 | 0.98 |
3rd-order | g(α) = [1 − (1 − α)−2)]/( −2) | 178.58 | 0.97 | 189.23 | 0.97 | 184.49 | 0.96 | 183.24 | 0.98 | 183.88 | 0.97 |
4th-order | g(α) = [1 − (1 − α)−3)]/( −3) | 250.5 | 0.96 | 265.3 | 0.96 | 258.65 | 0.95 | 257.24 | 0.97 | 257.92 | 0.96 |
Diffusional | |||||||||||
1-D | g(α) = α2 | 75.91 | 0.99 | 80.73 | 0.99 | 78.73 | 0.99 | 77.57 | 0.99 | 78.23 | 0.99 |
2-D | g(α) = (1 − α)ln(1 − α)+α | 93.87 | 0.99 | 99.68 | 0.99 | 97.19 | 0.99 | 95.94 | 0.99 | 96.67 | 0.99 |
3-D (Jander) | g(α) = [1 − (1 − α)1/3]2 | 117.64 | 0.99 | 124.71 | 0.99 | 121.8 | 0.99 | 120.47 | 0.99 | 121.16 | 0.99 |
GB | g(α) = 1 − 2/3α− (1 − α)2/3 | 101.6 | 0.99 | 107.92 | 0.99 | 105.34 | 0.99 | 104.01 | 0.99 | 104.71 | 0.99 |
Nucleation | |||||||||||
2/3-Power law | g(α) = α3/2 | 54.37 | 0.99 | 57.95 | 0.99 | 56.37 | 0.99 | 55.45 | 0.99 | 56.04 | 0.99 |
2-Power law | g(α) = α1/2 | 11.28 | 0.98 | 12.34 | 0.99 | 11.74 | 0.99 | 11.37 | 0.98 | 11.68 | 0.99 |
3-Power law | g(α) = α1/3 | 4.07 | 0.95 | 4.74 | 0.98 | 4.32 | 0.95 | 3.99 | 0.92 | 4.28 | 0.95 |
2-AE | g(α) = [−ln(1 − α)]1/2 | 28.18 | 0.99 | 30.26 | 0.99 | 29.18 | 0.98 | 28.77 | 0.99 | 29.10 | 0.99 |
3-AE | g(α) = [−ln(1 − α)]1/3 | 15.38 | 0.99 | 16.63 | 0.99 | 15.96 | 0.98 | 15.63 | 0.99 | 15.90 | 0.99 |
4-AE | g(α) = [−ln(1 − α)]1/4 | 8.97 | 0.98 | 9.89 | 0.99 | 9.31 | 0.96 | 9.03 | 0.99 | 9.30 | 0.98 |
Contracting geometry | |||||||||||
Area | g(α) = 1 − (1 − α)1/2 | 47.89 | 0.99 | 51.05 | 0.99 | 49.55 | 0.99 | 48.89 | 0.99 | 49.34 | 0.99 |
Volume | g(α) = 1 − (1 − α)1/3 | 53.71 | 0.99 | 57.20 | 0.99 | 55.62 | 0.99 | 54.87 | 0.99 | 55.35 | 0.99 |
Component | Parameter | Initial Guess | Range | Model I Optimized Value | Model II Optimized Value |
---|---|---|---|---|---|
Resin | lnAr (ln s−1) | 23.82 | (2.4, 47.6) | 8 | 16.87 |
Er (kJ/mol) | 69.30 | (6.9, 138.6) | 133.81 | 138.49 | |
nr | 1 | (0.1, 8) | 2.75 | 3.00 | |
Wr,o (%) | 10 | (1, 20) | 13.83 | 9.70 | |
φr/σr (%) | 50 | (5, 95) | 23.84 | 54.88 | |
γr (%) | 50 | (5, 95) | − | 7.83 | |
Hemicellulose | lnAh (ln s−1) | 31.21 | (3.1, 62.4) | 16.08 | 15.77 |
Eh (kJ/mol) | 112.66 | (11.3, 225.3) | 188.22 | 177.86 | |
nh | 1 | (0.1, 8) | 2.68 | 1.12 | |
Wh,o (%) | 18 | (1.8, 36) | 28.67 | 20.04 | |
φh/σh (%) | 50 | (5, 95) | 20.91 | 11.51 | |
γh (%) | 50 | (5, 95) | − | 45.02 | |
Cellulose | lnAc (ln s−1) | 39.10 | (3.9, 78.2) | 18.49 | 19.00 |
Ec (kJ/mol) | 159.70 | (16, 319.4) | 170.24 | 169.65 | |
nc | 1 | (0.1, 8) | 1.75 | 1.85 | |
Wc,o (%) | 48 | (4.8, 96) | 33.88 | 43.48 | |
φc/σc (%) | 50 | (5, 95) | 31.73 | 13.87 | |
γc (%) | 50 | (5, 95) | − | 40.26 | |
Lignin | lnAl (ln s−1) | 50.33 | (5, 100.7) | 17.15 | 12.99 |
El (kJ/mol) | 225.88 | (22.6, 451.8) | 221.25 | 222.25 | |
nl | 1 | (0.1, 8) | 3.96 | 2.80 | |
Wl,o (%) | − | 23.62 | 26.78 | ||
φl /σl (%) | 50 | (5, 95) | 22.71 | 5.95 | |
γl (%) | 50 | (5, 95) | − | 76.20 | |
Tar | lnAt (ln s−1) | 17.9 | (1.8, 35.8) | − | 33.24 |
Et (kJ/mol) | 124 | (12.4, 248) | − | 110.25 | |
nt | 1 | (0.1, 8) | − | 4.02 | |
θ (%) | 50 | (5, 95) | − | 14.42 |
Model | 10 °C/min | 20 °C/min | 30 °C/min | 40 °C/min | Mean Value |
---|---|---|---|---|---|
Model I | 22.9% | 26.6% | 24.2% | 20.7% | 23.6% |
Model II | 1.1% | 4.3% | 2.5% | 0.3% | 2% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, L.; Jiang, Y.; Wang, L.; Xu, W. Kinetic Study on the Pyrolysis of Medium Density Fiberboard: Effects of Secondary Charring Reactions. Energies 2018, 11, 2481. https://doi.org/10.3390/en11092481
Pan L, Jiang Y, Wang L, Xu W. Kinetic Study on the Pyrolysis of Medium Density Fiberboard: Effects of Secondary Charring Reactions. Energies. 2018; 11(9):2481. https://doi.org/10.3390/en11092481
Chicago/Turabian StylePan, Longwei, Yong Jiang, Lei Wang, and Wu Xu. 2018. "Kinetic Study on the Pyrolysis of Medium Density Fiberboard: Effects of Secondary Charring Reactions" Energies 11, no. 9: 2481. https://doi.org/10.3390/en11092481