Investigations on the Developed Full Frequency- Dependent Cable Model for Calculations of Fast Transients †
Abstract
:1. Introduction
2. Wave Propagation Cable Model
3. Analysis in the Frequency Domain
3.1. Impact of the Frequency Dependent Cable Parameters
3.2. Impact of the Length Distribution of PI-Sections
3.3. Impact of the Number of PI-Sections
4. Analysis in the Time Domain
4.1. Optimization of the Number of PI-Sections—First Algorithm
4.2. Optimization of the Number of PI-Sections—Second Algorithm
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Watson, N.; Arrillaga, J. Power Systems Electromagnetic Transients Simulation; The Institution of Engineering and Technology: London, UK, 2007. [Google Scholar]
- Juan, A. Power System Transients: Parameter Determination; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Rusek, A.; Ganesan, S.; Aloi, N. A Friendly Approach to Transient Processes in Transmission Lines. In Proceedings of the 2011 ASEE North Central & Illinois-Indiana Section Conference, Mount Pleasant, MI, USA, 1–2 April 2011. [Google Scholar]
- Snelson, J. Propagation of travelling waves on transmission lines—Frequency dependent parameters. IEEE Trans. Power Appar. Syst. 1971, PAS-90, 2561–2567. [Google Scholar] [CrossRef]
- Meyer, W.S.; Dommel, H.W. Numerical Modelling of Frequency-Dependent Transmission-Line Parameters in an Electromagnetic Transients Program. IEEE Trans. Power Appar. Syst. 1974, PAS-93, 1401–1409. [Google Scholar] [CrossRef]
- Dommel, H.W. Digital computer solution of electromagnetic transients in single- and multiphase networks. IEEE Trans. Power Appar. Syst. 1969, PAS-88, 388–399. [Google Scholar] [CrossRef]
- Marti, J. Accurate modelling of frequency-dependent lines in electromagnetic transient simulations. IEEE Trans. Power Appar. Syst. 1982, PAS-101, 147–155. [Google Scholar] [CrossRef]
- Huang, W.; Semlyen, A. Computation of Electro-Magnetic Transients on Three-Phase Transmission Line with Corona and Frequency Dependent Parameters. In Proceedings of the IPST 95, International Conference on Power System Trasients, Lisbon, Spain, 3–7 September 1995; pp. 17–22. [Google Scholar]
- Noda, T.; Nagaoka, N.; Ametani, A. Phase Domain Modeling of Frequency-Dependent transmission Lines by Means of an ARMA Model. IEEE Trans. Power Deliv. 1996, 11, 401–411. [Google Scholar] [CrossRef]
- Noda, T. Application of Frequency-Partitioning Fitting to the Phase-Domain Frequency-Dependent Modeling of Overhead Transmission Lines. IEEE Trans. Power Deliv. 2015, 30, 174–183. [Google Scholar] [CrossRef]
- Hoshmeh, A.; Schmidt, U. A Full Frequency-Dependent Cable Model for the Calculation of Fast Transients. Energies 2017, 10, 1158. [Google Scholar] [CrossRef]
- Schmidt, U.; Shirvani, A.; Probst, R. An improved algorithm for determination of cable parameters based on frequency-dependent conductor segmentation. In Proceedings of the IEEE PES Transmission and Distribution Conference, Montevideo, Uruguay, 3–5 September 2012; pp. 241–246. [Google Scholar]
- Schmidt, U. Frequenzabhängige Parameter von Kabeln zur Berechnung von Ausgleichsvorgängen im. Zeitbereich. Dissertation, Technische Universität Chemnitz, Ilmenau, Germany, 2013. [Google Scholar]
- Gustavsen, B.; Semlyen, A. Rational approximation of frequency domain responses by Vector Fitting. IEEE Trans. Power Deliv. 1999, 14, 1052–1061. [Google Scholar] [CrossRef]
- Gustavsen, B. Improving the pole relocating properties of vector fitting. IEEE Trans. Power Deliv. 2006, 21, 1587–1592. [Google Scholar] [CrossRef]
- Marti, L. Simulation of Electromagnetic Transients in Underground Cables with Frequency-Dependent Modal Transformation Matrices. Ph.D. Thesis, The University of British Columbia, Vancouver, BC, Canada, 1986. [Google Scholar]
- Chrysochos, A.I.; Papadopoulos, T.A.; Papagiannis, G.K. Robust Calculation of Frequency-Dependent Transmission-Line Transformation Matrices Using the Levenberg Marquardt Method. IEEE Trans. Power Deliv. 2014, 29, 1621–1629. [Google Scholar] [CrossRef]
- Gustavsen, B.; Semlyen, A. Combined phase and modal domain calculation of transmission line transients based on vector fitting. IEEE Trans. Power Deliv. 1998, 13, 596–604. [Google Scholar] [CrossRef]
- Marti, J. The Problem of Frequency Dependence in Transmission Line Modelling. Ph.D. Thesis, The University of British Columbia, Vancouver, BC, Canada, 1981. [Google Scholar]
- Marti, L. Simulation of transients in underground cables with frequency dependent modal transformation matrix. IEEE Trans. Power Appar. Syst. 1988, 3, 1099–1110. [Google Scholar] [CrossRef]
- Hoshmeh, A.; Malekian, K.; Schufft, W.; Schmidt, U. A single-phase cable model based on lumped-parameters for transient calculations in the time domain. In Proceedings of the 15th International Conference on Environment and Electrical Engineering (EEEIC 2015), Rome, Italy, 10–13 June 2015; pp. 731–736. [Google Scholar]
- Scott-Meyer, W. EMTP—Rule Book: Manual, Bonneviller Power Administration; European EMTP–ATP Users Group: Offenbach, Germany, 1982. [Google Scholar]
- Hadid, S. Verlustfaktor-Messung an PE/VPE-isolierten Mittelspannungskabeln bei veränderlicher Frequenz; Interner forschungsbericht, Technische Universität Chemnitz: Chemnitz, Germany, 2011. [Google Scholar]
- Hadid, S.; Schmidt, U.; Schufft, W.; Rätzke, S. Frequenzabhängigkeit des Verlustfaktors tan δ an VPE-isolierten Kabeln. ETG-Fachtagung, Diagnostik elektrischer Betriebsmittel 2012. [Google Scholar]
- Dommel, H.W. Electromagnetic Transients Program Manual (EMTP Theory Book); Bonneville Power Administration: Portland, OR, USA, 1986. [Google Scholar]
- Ametani, A. A general formulation of impedance and admittance of cables. IEEE Trans. Power Appar. Syst. 1980, PAS-99, 902–909. [Google Scholar] [CrossRef]
- Dommel, H.W. Computation of cable impedances based of subdivision of conductors. IEEE Trans. Power Deliv. 1987, PWRD-2, 21–27. [Google Scholar]
- Lucas, R.; Taluktar, S. Advances in finite elemente techniques for calculation cable resistances and inductances. EEE Trans. Power Appar. Syst. 1978, PAS-9711, 875–883. [Google Scholar] [CrossRef]
- Hedman, D.E. Propagation on overhead Transmission Lines: I. Theory of Modal Analysis; II. Earth-Conduction Effects and Ptactical Results. IEEE Trans. 1965, 110, 200–211. [Google Scholar]
- Semlyen, A.; Dabuleanu, A. Fast and Accurate Switching Transient Calculations on Transmission Lines With Ground Return Using Recursive Convolutions. IEEE Trans. Power Appar. Syst. 1975, 94, 561–571. [Google Scholar] [CrossRef]
- Garcia, N.; Acha, E. Transmission Line Model with Frequency Dependency and Propagation Effects: A Model Order Reduction and State-Space Approach. In Proceedings of the 2008 IEEE Power and Energy Society General Meeting—Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 20–24 July 2008; pp. 1–7. [Google Scholar]
Name | Unit | Value |
---|---|---|
Outer radius of the core | ||
Inner radius of the sheath | ||
Outer radius of the sheath | ||
Outer insulation radius | ||
Core resistivity | ||
Shield resistivity | ||
Inner insulation | ||
Outer insulation | ||
Inner insulation relative permittivity | ||
Outer insulation relative permittivity | ||
Relative permeability | ||
Earth resistivity | 150 | |
Type of installation | Trefoil | |
Laying depth (system center) | ||
Length | ℓ |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoshmeh, A.; Schmidt, U.; Gürlek, A. Investigations on the Developed Full Frequency- Dependent Cable Model for Calculations of Fast Transients. Energies 2018, 11, 2390. https://doi.org/10.3390/en11092390
Hoshmeh A, Schmidt U, Gürlek A. Investigations on the Developed Full Frequency- Dependent Cable Model for Calculations of Fast Transients. Energies. 2018; 11(9):2390. https://doi.org/10.3390/en11092390
Chicago/Turabian StyleHoshmeh, Abdullah, Uwe Schmidt, and Akif Gürlek. 2018. "Investigations on the Developed Full Frequency- Dependent Cable Model for Calculations of Fast Transients" Energies 11, no. 9: 2390. https://doi.org/10.3390/en11092390
APA StyleHoshmeh, A., Schmidt, U., & Gürlek, A. (2018). Investigations on the Developed Full Frequency- Dependent Cable Model for Calculations of Fast Transients. Energies, 11(9), 2390. https://doi.org/10.3390/en11092390