Comparing the Biomass Yield and Biogas Potential of Phragmites australis with Miscanthus x giganteus and Panicum virgatum Grown in Canada
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site History and Field Sampling
2.2. Biological Methane Potential Assay
2.3. Statistical Methods
3. Results
3.1. Biomass Yield and Chemical Composition
3.2. Biological Methane Potential Assay
4. Discussion
4.1. Harvest and Biomass Yields
4.2. Biological Methane Potential
4.3. Phragmites australis Disposal Using Anaerobic Digestion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Biogas Association. Interactive Map. Available online: https://www.biogasassociation.ca/ (accessed on 21 August2018).
- Frigon, J.C.; Roy, C.; Guiot, S.R. Anaerobic co-digestion of dairy manure with mulched switchgrass for improvement of the methane yield. Bioproc. Biosyst. Eng. 2012, 35, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Grieder, C.; Dhillon, B.; Schipprack, W.; Melchinger, A. Breeding maize as biogas substrate in Central Europe: I. Quantitative-genetic parameters for testcross performance. Theor. Appl. Genet. 2012, 124, 971–980. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, L.; Xi, B.; Sun, W.; Xia, X.; Zhu, C.; He, X.; Li, M.; Yang, T.; Wang, P.; et al. Biogas production improvement and C/N control by natural clinoptilolite addition into anaerobic co-digestion of Phragmites australis, feces and kitchen waste. Bioresour. Technol. 2015, 180, 192–199. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, S.B.; Adams Kszos, L. Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 2005, 28, 515–535. [Google Scholar] [CrossRef]
- Parrish, D.J.; Fike, J.H. The Biology and Agronomy of Switchgrass for Biofuels. Crit. Rev. Plant Sci. 2005, 24, 423–459. [Google Scholar] [CrossRef]
- Atkinson, C.J. Establishing perennial grass energy crops in the UK: A review of current propagation options for Miscanthus. Biomass Bioenergy 2009, 33, 752–759. [Google Scholar] [CrossRef]
- Mason, W.; Lachance, L. Effects of Initial Harvest Date on Dry Matter Yield, in Vitro Dry Matter Digestibility and Protein in Timothy, Tall Fescue, Reed Canary Grass and Kentuck Bluegrass. Can. J. Plant Sci. 1983, 63, 675–685. [Google Scholar] [CrossRef]
- Bourgeau-Chavez, L.L.; Kowalski, K.P.; Carlson Mazur, M.L.; Scarbrough, K.A.; Powell, R.B.; Brooks, C.N.; Huberty, B.; Jenkins, L.K.; Banda, E.C.; Galbraith, D.M.; et al. Mapping invasive Phragmites australis in the coastal Great Lakes with ALOS PALSAR satellite imagery for decision support. J. Great Lakes Res. 2013, 39 (Suppl. 1), 65–77. [Google Scholar] [CrossRef]
- Murray-Hudson, M.; Mmopelwa, G. Phragmites australis reedbeds in the southern Okavango Delta, Botswana. Afr. J. Plant Sci. Biotech. 2011, 5, 16–20. [Google Scholar]
- Sathitsuksanoh, N.; Zhu, Z.; Templeton, N.; Rollin, J.A.; Harvey, S.P.; Zhang, Y.H.P. Saccharification of a Potential Bioenergy Crop, Phragmites australis (Common Reed), by Lignocellulose Fractionation Followed by Enzymatic Hydrolysis at Decreased Cellulase Loadings. Ind. Eng. Chem. Res. 2009, 48, 6441–6447. [Google Scholar] [CrossRef]
- Haslam, S.M. Phragmites-Communis Trin. J. Ecol. 1972, 60, 585–610. [Google Scholar] [CrossRef]
- Mook, J.H.; Van Der Toorn, J. The influence of environmental factors and management on stands of Phragmites australis. II. Effects on yield and its relationships with shoot density. J. Appl. Ecol. 1982, 19, 501–517. [Google Scholar] [CrossRef]
- Brix, H.; Sorrell, B.K.; Lorenzen, B. Are Phragmites-dominated wetlands a net source or net sink of greenhouse gases? Aquat. Bot. 2001, 69, 313–324. [Google Scholar] [CrossRef] [Green Version]
- Ho, Y.B. Shoot development and production studies of Phragmites australis (Cav.) Trin. Ex Steudel in Scottish Lochs. Hydrobiologia 1979, 64, 215–222. [Google Scholar] [CrossRef]
- Risén, E.; Gregeby, E.; Tatarchenko, O.; Blidberg, E.; Malmström, M.E.; Welander, U.; Gröndahl, F. Assessment of biomethane production from maritime common reed. J. Clean. Prod. 2013, 53, 186–194. [Google Scholar] [CrossRef]
- Fredriksson, H. Storskalig Sommarskörd av vass—Energiåtgång, Kostnader och flöDen av växtnäring för System med skörd och Efterföljande Behandling (Harvesting of Common Reed during Summer—Energy Consumption, Costs and Nutrient Flow for Systems Including Harvesting and Treatment); Examensarbete, Sveriges lantbruksuniversitet (SLU): Uppsala, Sweden, 2002. [Google Scholar]
- Hansson, P.-A.; Fredriksson, H. Use of summer harvested common reed (Phragmites australis) as nutrient source for organic crop production in Sweden. Agric. Ecosyst. Environ. 2004, 102, 365–375. [Google Scholar] [CrossRef]
- Vymazal, J. Plants used in constructed wetlands with horizontal subsurface flow: A review. Hydrobiologia 2011, 674, 133–156. [Google Scholar] [CrossRef]
- Bagg, J. Pricing Corn Silage in 2014. Ontario Ministry of Agriculture Food Rural Affairs, 2014. Available online: http://www.omafra.gov.on.ca/english/crops/field/news/croptalk/2014/ct-0914a7.htm (accessed on 30 July 2015).
- Engloner, A.I. Structure, growth dynamics and biomass of reed (Phragmites australis)—A review. Flora Morphol. Distrib. Funct. Ecol. Plants 2009, 204, 331–346. [Google Scholar] [CrossRef]
- Ragaglini, G.; Dragoni, F.; Simone, M.; Bonari, E. Suitability of giant reed (Arundo donax L.) for anaerobic digestion: Effect of harvest time and frequency on the biomethane yield potential. Bioresour. Technol. 2014, 152, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Rice, E.W.; Baird, R.B.; Eaton, A.D.; Slesceri, L.S. Standard Methods for the Examination of Water and Wastewater, 22th ed.; American Public Health Association; American Water Works Association; Water Environment Federation: Denver, CO, USA, 2012. [Google Scholar]
- Jurado, E.; Gavala, H.N.; Skiadas, I.V. Enhancement of methane yield from wheat straw, miscanthus and willow using aqueous ammonia soaking. Environ. Technol. 2013, 34, 2069–2075. [Google Scholar] [CrossRef] [PubMed]
- Karunaratne, S.; Asaeda, T.; Yutani, K. Shoot regrowth and age-specific rhizome storage dynamics of Phragmites australis subjected to summer harvesting. Ecol. Eng. 2004, 22, 99–111. [Google Scholar] [CrossRef]
- Lewandowski, I.; Scurlock, J.M.O.; Lindvall, E.; Christou, M. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 2003, 25, 335–361. [Google Scholar] [CrossRef]
- Massé, D.; Gilbert, Y.; Savoie, P.; Bélanger, G.; Parent, G.; Babineau, D. Methane yield from switchgrass and reed canarygrass grown in Eastern Canada. Bioresour. Technol. 2011, 102, 10286–10292. [Google Scholar] [CrossRef] [PubMed]
- Clifton-brown, J.C.; Stampfl, P.F.; Jones, M.B. Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions. Glob. Chang. Biol. 2004, 10, 509–518. [Google Scholar] [CrossRef]
- Heaton, E.A.; Dohleman, F.G.; Miguez, A.F.; Juvik, J.A.; Lozovaya, V.; Widholm, J.; Zabotina, O.A.; McIsaac, G.F.; David, M.B.; Voigt, T.B.; et al. Miscanthus: A Promising Biomass Crop; Jean-Claude, K., Michel, D., Eds.; Academic Press: Cambridge, MA, USA, 2010; Chapter 3; pp. 75–137. [Google Scholar]
- Massé, D.; Gilbert, Y.; Savoie, P.; Bélanger, G.; Parent, G.; Babineau, D. Methane yield from switchgrass harvested at different stages of development in Eastern Canada. Bioresour. Technol. 2010, 101, 9536–9541. [Google Scholar] [CrossRef] [PubMed]
- Granéli, W. Reed Phragmites australis (Cav.) Trin. ex Steudel as an energy source in Sweden. Biomass 1984, 4, 183–208. [Google Scholar] [CrossRef]
- Mast, B.; Lemmer, A.; Oechsner, H.; Reinhardt-Hanisch, A.; Claupein, W.; Graeff-Hönninger, S. Methane yield potential of novel perennial biogas crops influenced by harvest date. Ind. Crops Prod. 2014, 58, 194–203. [Google Scholar] [CrossRef]
- Jagadabhi, P.S.; Kaparaju, P.; Rintala, J. Two-stage anaerobic digestion of tomato, cucumber, common reed and grass silage in leach-bed reactors and upflow anaerobic sludge blanket reactors. Bioresour. Technol. 2011, 102, 4726–4733. [Google Scholar] [CrossRef] [PubMed]
- Prochnow, A.; Heiermann, M.; Plöchl, M.; Linke, B.; Idler, C.; Amon, T.; Hobbs, P.J. Bioenergy from permanent grassland—A review: 1. Biogas. Bioresour. Technol. 2009, 100, 4931–4944. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, A.T.W.M.; Zeeman, G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 2009, 100, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Menardo, S.; Bauer, A.; Theuretzbacher, F.; Piringer, G.; Nilsen, P.; Balsari, P.; Pavliska, O.; Amon, T. Biogas Production from Steam-Exploded Miscanthus and Utilization of Biogas Energy and CO2 in Greenhouses. Bioenergy Res. 2013, 6, 620–630. [Google Scholar] [CrossRef]
- Uellandahl, H.; Wang, G.; Moller, H.B.; Jorgensen, U.; Skiadas, I.V.; Gavala, H.N.; Ahring, B.K. Energy balance and cost-benefit analysis of biogas production from perennial energy crops pretreated by wet oxidation. Water Sci. Technol. 2008, 58, 1841–1847. [Google Scholar] [CrossRef] [PubMed]
- Amon, T.; Amon, B.; Kryvoruchko, V.; Machmüller, A.; Hopfner-Sixt, K.; Bodiroza, V.; Hrbek, R.; Friedel, J.; Pötsch, E.; Wagentristl, H.; et al. Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresour. Technol. 2007, 98, 3204–3212. [Google Scholar] [CrossRef] [PubMed]
- Amon, T.; Amon, B.; Kryvoruchko, V.; Zollitsch, W.; Mayer, K.; Gruber, L. Biogas production from maize and dairy cattle manure—Influence of biomass composition on the methane yield. Agric. Ecosyst. Environ. 2007, 118, 173–182. [Google Scholar] [CrossRef]
- Weiland, P. Biogas production: Current state and perspectives. Appl. Microbiol. Biotechnol. 2010, 85, 849–860. [Google Scholar] [CrossRef] [PubMed]
- Jin, G.; Bierma, T.; Walker, P. Biogas production from switchgrass under experimental conditions simulating U.S. digester operations. J. Environ. Sci. Health Part A 2012, 47, 470–478. [Google Scholar] [CrossRef] [PubMed]
- Kumari, D.; Singh, R. Pretreatment of lignocellulosic wastes for biofuel production: A critical review. Renew. Sustain. Energy Rev. 2018, 90, 877–891. [Google Scholar] [CrossRef]
- Ontario Ministry of Natural Resources and Forestry. Ontario Invasive Species Strategic Plan. 2012. Available online: https://www.ontario.ca/document/invasive-species-strategic-plan-2012 (accessed on 21 August 2018).
- Baute, K.A.; Robinson, D.E.; Van Eerd, L.L.; Edson, M.; Sikkema, S.; Gilroyed, B.H. Survival of seeds from perennial biomass species during commercial-scale anaerobic digestion. Weed Sci. 2016, 56, 258–266. [Google Scholar] [CrossRef]
Variable | Value |
---|---|
Operating Temperature (°C) | 38.2 ± 0.3 |
Retention Time (d) | 52.8 ± 11 |
Diet Components (kg): | |
Dairy Manure | 24,475 ± 5875 |
Corn Silage | 188 ± 135 |
Fats, Oils, and Grease | 795 ± 214 |
Total | 25,458 ± 5922 |
Total Solids (%) | 1.59 ± 0.15 |
Volatile Solids (%) | 55.34 ± 4.51 |
pH | 8.05 ± 0.07 |
Electrical Conductivity (mmhos cm−1) | 16.55 ± 0.82 |
Chemical Composition: | |
N (%) | 0.19 ± 0.06 |
P (%) | 0.02 ± 0.01 |
K (%) | 0.18 ± 0.01 |
NH3 (mg kg−1 dry matter) | 1660 ± 115 |
Species and Harvest Time | Dry Matter | Cellulose | Hemicellulose | Lignin | Protein |
---|---|---|---|---|---|
------ % ------ | --------------------------- g kg−1 DM † --------------------------- | ||||
Species | |||||
M. x giganteus | 46.5 (±2.9) b | 360 (±7.7) | 267.9 (±3.9) b | 74.8 (±20.7) | 79.2 (±15.2) b |
P. australis | 37.2 (±4.1) a | 374.5 (±9.6) | 245.2 (±3.6) a | 108.0 (±5.9) | 88.9 (±11.7) b |
P. virgatum | 35.1 (±5.4) a | 360.9 (±4.9) | 274.6 (±3.3) b | 67.4 (±4.7) | 43.8 (±4.9) a |
Z. mays | 29.3 | 205.4 | 175.9 | 63.6 | 83 |
Harvest Time | |||||
July | 31.5 (±2.5) m | 367.4 (±8.6) | 262.7 (±4) | 77.8 (±14.7) | 90.8 (±11.2) m |
October | 47.7 (±2.5) n | 362.9 (±2.9) | 262.4 (±6.3) | 89 (±7.6) | 50.5 (±5.5) n |
Species * Harvest Time | |||||
M. x giganteus * July | 40.3 (±0.5) | 363.7 (±16.4) | 261.2 (±1.7) xy | 76.3 (±46.3) | 112.2 (±5.5) x |
M. x giganteus *October | 52.8 (±1.6) | 356.3 (±3.7) | 274.7 (±5.2) x | 73.3 (±2.9) | 46.3 (±5.8) z |
P. australis * July | 30.8 (±1.8) | 380.9 (±20.3) | 252 (±3.0) yz | 98.5 (±7.2) | 108.6 (±16) xy |
P. australis * October | 43.6 (±6.2) | 368.1 (±3.5) | 238.4 (±2.9) z | 117.6 (±5.6) | 69.2 (±6.4) yz |
P. virgatum * July | 23.6 (±0.6) | 357.6 (±8.4) | 274.8 (±5.5) x | 58.8 (±0.3) | 51.7 (±6.8) z |
P. virgatum * October | 46.6 (±3.3) | 364.3 (±6.1) | 274.3 (±2.2) x | 76.1 (±0.8) | 36 (±2.7) z |
Effect | ------------------------------------------ p value ----------------------------------------------- | ||||
Species | 0.006 | 0.408 | <0.001 | 0.126 | <0.001 |
Harvest Time | <0.001 | 0.645 | 0.948 | 0.496 | <0.001 |
Harvest Time * Species | 0.185 | 0.697 | 0.021 | 0.823 | 0.034 |
Species and Harvest Time | Fresh Matter Yield | Dry Matter Yield | Stems | Height | Leaf |
---|---|---|---|---|---|
------------- kg m−2 ------------- | -- Number m−2 -- | ------ cm ------ | % of Total DM | ||
Species * Year | |||||
M. x giganteus * 2013 | 5.1 (±0.48) | 1.71 (±0.25) | 107 b | 180 (±10) b | 40 (±1) c |
M. x giganteus * 2014 | 4.6 (±0.44) | 1.99 (±0.43) | 86 b | 203 (±17) b | 33 (±4) bc |
P. australis * 2013 | 3.8 (±0.43) | 1.74 (±0.14) | 62 a | 268 (±5) c | 25 (±2) ab |
P. australis * 2014 | 3.81 (±0.3) | 1.9 (±0.12) | 97 b | 280 (±11) c | 17 (±1) a |
P. virgatum * 2013 | 1.63 (±0.16) | 0.6 (±0.08) | 276 c | 109 (±14) a | 32 (±4) bc |
P. virgatum * 2014 | 1.5 (±0.19) | 0.58 (±0.08) | 300 c | 97 (±9) a | 36 (±4) bc |
Effect | --------------------------------------------------- p value ----------------------------------------------- | ||||
Year | 0.464 | 0.305 | 0.393 | 0.116 | 0.085 |
Species * Year | 0.737 | 0.642 | 0.017 | 0.019 | 0.044 |
Harvest * Year | 0.504 | 0.421 | 0.315 | 0.261 | 0.686 |
Species and Harvest Time | Fresh Matter Yield | Dry Matter Yield | Stems † | Height | Leaf |
---|---|---|---|---|---|
------------- kg m−2 ------------- | -- Number m−2 -- | ------ cm ----- | % of Total DM | ||
Species | |||||
M. x giganteus | 4.85 (±0.32) c | 1.85 (±0.24) b | 93 b | 192 (±10) b | 37 (±2.4) b |
P. australis | 3.80 (±0.25) b | 1.82 (±0.09) b | 75 a | 274 (±5.9) c | 21 (±1.7) a |
P. virgatum | 1.56 (±0.12) a | 0.59 (±0.05) a | 282 c | 103 (±8.3) a | 34 (±2.6) b |
Harvest Time | |||||
July | 3.62 (±0.85) | 1.20 (±0.28) m | 132 | 173 (±19.8) m | 34 (±8.0) n |
October | 3.19 (±0.75) | 1.64 (±0.39) n | 120 | 205 (±15.4) n | 27 (±6.3) m |
Species * Harvest Time | |||||
M. x giganteus * July | 4.79 (±0.40) | 1.28 (±0.15) xy | 106 | 166 (±7.9) x | 38 (±2.8) |
M. x giganteus * October | 4.91 (±0.54) | 2.43 (±0.32) w | 82 | 217 (±10.7) w | 35 (±4.0) |
P. australis * July | 4.34 (±0.38) | 1.85 (±0.16) wx | 61 | 274.5 (±8.1) v | 22 (±2.2) |
P. australis * October | 3.27 (±0.12) | 1.80 (±0.10) wx | 93 | 272.5 (±9.5) v | 19 (±2.5) |
P. virgatum * July | 1.75 (±0.15) | 0.49 (±0.06) z | 273 | 79.7 (±6.8) z | 41 (±2.8) |
P. virgatum * October | 1.38 (±0.15) | 0.69 (±0.07) yz | 292 | 126 (±6.4) y | 27 (±1.7) |
Effect | --------------------------------------------------- p value ----------------------------------------------- | ||||
Species | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Harvest Time | 0.120 | 0.003 | 0.283 | <0.001 | 0.002 |
Species * Harvest Time | 0.216 | 0.003 | 0.623 | <0.001 | 0.061 |
Species * Harvest * Year | 0.359 | 0.672 | 0.753 | 0.194 | 0.744 |
Species and Harvest Time | L CH4 kg−1 VS † | L CH4 kg−1 DM ‡ | L CH4 kg−1 FM § | L CH4 m−2 | Methane (%) |
---|---|---|---|---|---|
Species | |||||
M. x giganteus | 198.6 (±16) | 175.8 (±12.3) b | 69.2 (±5) | 339.0 (±27.3) c | 72.3 (±7.1) |
P. australis | 140.0 (±16.1) | 114.5 (±11.3) a | 67.8 (±6.4) | 249.9 (±33.3) b | 72.8 (±1.3) |
P. virgatum | 173.3 (±13.4) | 159.2 (±12.4) b | 72.4 (±5.4) | 116.7 (±12.4) a | 66.5 (±2.3) |
Z. mays | 334.9 (±4.3) | 314.1 (±4.1) | 123.5 (±1.6) | 497.5 (±6.4) | 75.6 (±3.9) |
Harvest Time | |||||
July | 196.2 (±2.8) y | 169.1 (±2.8) y | 72.1 (±1.1) y | 247.5 (±4.4) | 69.7 (±4.3) |
October | 145.1 (±12.2) z | 130.6 (±11.9) z | 67.5 (±4.8) z | 222.9 (±4.5) | 71.3 (±2.8) |
Species * Harvest Time | |||||
M. x giganteus * July | 229.8 (±15.2) | 198.6 (±13.2) | 54.0 (±3.6) | 253.2 (±16.8) x | 77.4 (±9.3) |
M. x giganteus * October | 167.5 (±8.9) | 153.0 (±8.2) | 75.5 (±4.0) | 371.4 (±19.8) w | 68.7 (±5.8) |
P. australis * July | 172.4 (±15.3) | 136.4 (±12.1) | 58.2 (±5.2) | 251.7 (±22.3) x | 70.6 (±5.0) |
P. australis * October | 107.6 (±3.9) | 92.6 (±3.4) | 50.8 (±1.9) | 166.2 (±6.1) y | 75.9 (±5.2) |
P. virgatum * July | 186.5 (±9.4) | 172.2 (±8.7) | 48.5 (±2.5) | 83.6 (±4.2) z | 63.0 (±3.4) |
P. virgatum * October | 160.1 (±25.2) | 146.2 (±23.0) | 75.3 (±11.9) | 101.2 (±15.9) z | 71.2 (±4.6) |
Interactions | |||||
Species | 0.052 | 0.027 | 0.348 | 0.001 | 0.194 |
Harvest Time | 0.033 | 0.049 | 0.046 | 0.099 | 0.869 |
Run | 0.824 | 0.829 | 0.954 | 0.813 | NA |
Harvest Time * Run | 0.656 | 0.632 | 0.771 | 0.808 | 0.521 |
Species * Run | 0.549 | 0.554 | 0.579 | 0.245 | 0.965 |
Species * Harvest Time | 0.513 | 0.787 | 0.138 | 0.006 | 0.803 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baute, K.; Van Eerd, L.L.; Robinson, D.E.; Sikkema, P.H.; Mushtaq, M.; Gilroyed, B.H. Comparing the Biomass Yield and Biogas Potential of Phragmites australis with Miscanthus x giganteus and Panicum virgatum Grown in Canada. Energies 2018, 11, 2198. https://doi.org/10.3390/en11092198
Baute K, Van Eerd LL, Robinson DE, Sikkema PH, Mushtaq M, Gilroyed BH. Comparing the Biomass Yield and Biogas Potential of Phragmites australis with Miscanthus x giganteus and Panicum virgatum Grown in Canada. Energies. 2018; 11(9):2198. https://doi.org/10.3390/en11092198
Chicago/Turabian StyleBaute, Kurtis, Laura L. Van Eerd, Darren E. Robinson, Peter H. Sikkema, Maryam Mushtaq, and Brandon H. Gilroyed. 2018. "Comparing the Biomass Yield and Biogas Potential of Phragmites australis with Miscanthus x giganteus and Panicum virgatum Grown in Canada" Energies 11, no. 9: 2198. https://doi.org/10.3390/en11092198