Feasibility of a 100 MW Installed Capacity Wind Farm for Different Climatic Conditions
Abstract
1. Introduction
2. Background
3. Materials and Methods
3.1. Site Data Description
3.2. Description and Design of the Wind Power System
- The power output of a wind generator is proportional to the area swept by the rotor; that is, doubling the swept area makes the power output double.
- The power output of a wind generator is proportional to the cube of the wind speed.
4. Results and Discussion
Risk Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Af | Frontal area of the blade |
CP | Total installed plant capacity (kw) |
Cmax | Power coefficient (%) |
CF | Capacity factor (%) |
d | Discount rate (%) |
E | End annual energy delivered (kwh/year) |
GHGbase | Proposed case GHG emission factor |
GHGproposed | Proposed case GHG emission factor |
IRR | Internal rate of return (%) |
I | Initial investment (US$) |
NPV | Net present value (US$) |
NCi | Net cash inflow (US$) |
NCt | Total net cash (US$) |
NCp | Net periodic cash flow (US$) |
Pw | Wind power (W) |
PBP | Payback period (years) |
Pout | Power output from wind turbine (kwh) |
τ | Time period (hour) |
t | Number of time periods (%) |
T | Time (s) |
V | Wind velocity(m/s) |
x | Distance (m) |
ρ | Density of air (kg/m3) |
References
- Bhutta, M.M.A.; Hayat, N.; Farooq, A.U.; Ali, Z.; Jamil, S.R.; Hussain, Z. Vertical axis wind turbine—A review of various configurations and design techniques. Renew. Sustain. Energy Rev. 2012, 16, 1926–1939. [Google Scholar] [CrossRef]
- Fung, K.T.; Scheffler, R.L.; Stolpe, J. Wind energy—A utility perspective. IEEE Trans. Power Appar. Syst. 1981, 100, 1176–1182. [Google Scholar] [CrossRef]
- Armeanu, D.Ş.; Vintilă, G.; Gherghina, Ş.C. Does renewable energy drive sustainable economic growth? multivariate panel data evidence for EU-28 countries. Energies 2017, 10, 381. [Google Scholar] [CrossRef]
- Fang, Y.P. Economic welfare impacts from renewable energy consumption: The China experience. Renew. Sustain. Energy Rev. 2011, 15, 5120–5128. [Google Scholar] [CrossRef]
- Baker, J.R. Features to aid or enable self-starting of fixed pitch low solidity vertical axis wind turbines. J. Wind Eng. Ind. Aerod. 2003, 15, 369–380. [Google Scholar] [CrossRef]
- Joselin Herbert, G.M.; Iniyan, S.; Sreevalsan, E.; Rajapandian, S. A review of wind energy technologies. Renew. Sustain. Energy Rev. 2007, 11, 1117–1145. [Google Scholar] [CrossRef]
- Global Wind Report (GWEC). Available online: http://www.gwec.net/wp-content/uploads/vip/GWEC_PRstats2016_EN_WEB.pdf (accessed on 20 April 2018).
- BP Statistical Review of World Energy 2018. Available online: https://www.statista.com/statistics/265579/primary-energy-consumption-in-saudi-arabia/ (accessed on 3 August 2018).
- Rafique, M.M.; Rehman, S.; Lashin, A.; Al Arifi, N. Analysis of a solar cooling system for climatic conditions of five different cities of Saudi Arabia. Energies 2016, 9, 75. [Google Scholar] [CrossRef]
- World Resources Institute (WRI). Climate Analysis Indicators Tool (CAIT). World Resources Institute. Available online: http:// cait.wri.org (accessed on 6 April 2018).
- Pinson, P. Wind energy: Forecasting challenges for its operational management. Stat. Sci. 2013, 28, 564–585. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J. K-nearest neighbors and a kernel density estimator for GEFCom2014 probabilistic wind power forecasting. Int. J. Forecast. 2016, 32, 1074–1080. [Google Scholar] [CrossRef]
- Pinson, P.; Chevallier, C.; Kariniotakis, G.N. Trading wind generation from short-term probabilistic forecasts of wind power. IEEE Trans. Power Syst. 2007, 22, 1148–1156. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Zeng, B.; Hu, Z. Chance-constrained two-stage unit commitment under uncertain load and wind power output using bilinear benders decomposition. IEEE Trans. Power Syst. 2017, 32, 3637–3647. [Google Scholar] [CrossRef]
- Rehman, S.; Alam, M.M.; Alhems, L.M.; Rafique, M.M. Horizontal Axis Wind Turbine Blade Design Methodologies for Efficiency Enhancement—A Review. Energies 2018, 11, 506. [Google Scholar] [CrossRef]
- Rehman, S.; Ali, S.; Khan, S. Wind Farm Layout Design Using Cuckoo Search Algorithms. Appl. Artif. Intell. 2016, 30, 899–922. [Google Scholar] [CrossRef]
- Shoaib, M.; Siddiqui, I.; Rehman, S.; Rehman, S.; Khan, S.; Lashin, A. Comparison of Wind Energy Generation Using the Maximum Entropy Principle and the Weibull Distribution Function. Energies 2016, 9, 842. [Google Scholar] [CrossRef]
- Mohandes, M.A.; Rehman, S. Short term wind speed estimation in Saudi Arabia. J. Wind Eng. Ind. Aerod. 2014, 128, 37–53. [Google Scholar] [CrossRef]
- Bagiorgas, H.S.; Mihalakakou, G.; Rehman, S.; Al-Hadhrami, L.M. Wind power potential assessment for three buoys data collection stations in the Ionian Sea using Weibull distribution function. Int. J. Green Energy 2016, 13, 703–714. [Google Scholar] [CrossRef]
- Himri, Y.; Rehman, S.; Himri, S.; Mohammadi, K.; Sahin, B.; Malik, A.S. Investigation of wind resources in Timimoun region, Algeria. Wind Eng. 2016, 40, 250–260. [Google Scholar] [CrossRef]
- Ramli, M.A.M.; Twaha, S.; ZakariyaAl-Hamouz, Z. Analyzing the potential and progress of distributed generation applications in Saudi Arabia: The case of solar and wind resources. Renew. Sustain. Energy Rev. 2017, 70, 287–297. [Google Scholar] [CrossRef]
- Eltamaly, A.M. Design and implementation of wind energy system in Saudi Arabi. Renew. Energy 2013, 60, 42–52. [Google Scholar] [CrossRef]
- Rehman, S.; Ahmad, A. Assessment of wind energy potential for coastal locations of the Kingdom of Saudi Arabia. Energy 2004, 29, 1105–1115. [Google Scholar] [CrossRef]
- Bassyouni, M.; Gutub, S.; Javaid, U.; Awais, M.; Rehman, S.; Abdel-Hamid, S.; Abdel-Aziz, M.; Abouel-Kasem, A.; Shafeek, H. Assessment and analysis of wind power resource using weibull parameters. Energy Explor. Exploit. 2015, 33, 105–122. [Google Scholar] [CrossRef]
- Baseer, M.A.; Meyer, J.P.; Alam, M.M.; Rehman, S. Wind speed and power characteristics for Jubail industrial city, Saudi Arabia. Renew. Sustain. Energy Rev. 2015, 52, 1193–1204. [Google Scholar] [CrossRef]
- Shaahid, S.M.; Al-Hadhrami, L.M.; Rahman, M.K. Economic feasibility of development of wind power plants in coastal locations of Saudi Arabia—A review. Renew. Sustain. Energy Rev. 2013, 19, 589–597. [Google Scholar] [CrossRef]
- Rehman, S.; Halawani, T.O.; Mohandes, M. Wind power cost assessment at twenty locations in the Kingdom of Saudi Arabia. Renew. Energy 2003, 28, 573–583. [Google Scholar] [CrossRef]
- Rehman, S. Wind energy resources assessment for Yanbo, Saudi Arabia. Energy Convers. Manag. 2004, 45, 2019–2032. [Google Scholar] [CrossRef]
- Mohandes, M.A.; Rehman, S.; Halawani, T.O. A neural networks approach for wind speed prediction. Renew. Energy 1998, 13, 345–354. [Google Scholar] [CrossRef]
- Zheng, Q.; Rehman, S.; Alam, M.; Alhems, L.M.; Lashin, A. Decomposition of wind speed fluctuations at different time scales. J. Earth Syst. Sci. 2017, 126. [Google Scholar] [CrossRef]
- Alam, M.M.; Rehman, S.; Al-Hadhrami, L.M.; Meyer, J.P. Extraction of the inherent nature of wind speed using wavelets and FFT. Energy Sustain. Dev. 2014, 22, 34–47. [Google Scholar] [CrossRef]
- Siddiqi, A.H.; Khan, S.; Rehman, S. Wind Speed Simulation Using Wavelets. Am. J. Appl. Sci. 2005, 2, 557–564. [Google Scholar] [CrossRef]
- Rehman, S.; Khan, S. Fuzzy Logic Based Multi-Criteria Wind Turbine Selection Strategy—A Case Study of Qassim, Saudi Arabia. Energies 2016, 9, 872. [Google Scholar] [CrossRef]
- Rehman, S.; Al-Abbadi, N.M. Wind power characteristics on the North West coast of Saudi Arabia. Energy Environ. 2009, 20–21, 1257. [Google Scholar] [CrossRef]
- Al-Abbadi, N.M.; Rehman, S. Wind speed and wind power characteristics for Gassim, Saudi Arabia. Int. J. Green Energy 2009, 6, 201–217. [Google Scholar] [CrossRef]
- Rehman, S.; Al-Abbadi, N.M. Wind shear coefficient, turbulence intensity and wind power potential assessment for Dhulom, Saudi Arabia. Renew. Energy 2008, 33, 2653–2660. [Google Scholar] [CrossRef]
- Rehman, S.; Al-Abbadi, N.M. Wind shear coefficients and energy yield for Dhahran, Saudi Arabia. Renew. Energy 2007, 32, 738–749. [Google Scholar] [CrossRef]
- Rehman, S.; Al-Abbadi, N.M. Wind shear coefficients and their effect on energy production. Energy Convers. Manag. 2005, 46, 2578–2591. [Google Scholar] [CrossRef]
- Rehman, S.; Halawani, T.O. Statistical characteristics of wind in Saudi Arabia. Renew. Energy 1994, 4, 949–956. [Google Scholar] [CrossRef]
- Rehman, S.; Halawani, T.O.; Husain, T. Weibull parameters for wind speed distribution in Saudi Arabia. Sol. Energy 1994, 53, 473–479. [Google Scholar] [CrossRef]
- Rehman, S.; Ahmed, M.A.; Mohand, H.M.; Al-Sulaiman, F.A. Feasibility study of the grid connected 10 MW installed capacity PV power plants in Saudi Arabia. Renew. Sustain. Energy Rev. 2017, 80, 319–329. [Google Scholar] [CrossRef]
Parameter | Dhahran | Riyadh | Jeddah | Guriat | Nejran |
---|---|---|---|---|---|
Latitude (°N) | 26.3 | 24.7 | 21.7 | 31.4 | 17.6 |
Longitude (°E) | 50.2 | 46.7 | 39.2 | 37.3 | 44.4 |
Elevation (m) | 17.0 | 620.0 | 17.0 | 504.0 | 1212.0 |
Parameter | Unit | Value |
---|---|---|
Power capacity per turbine | kW | 1300 |
Manufacturer | Siemens | - |
Model | AN BONUS 1.3 MW-60 m | - |
Number of turbines | - | 77 |
Hub height | m | 60 |
Rotor diameter per turbine | m | 62 |
Swept area per turbine | m² | 3019.07 |
Shape factor | - | 2 |
Power coefficient | % | 45 |
Array losses | % | 3 |
Airfoil losses | % | 2 |
Miscellaneous losses | % | 3 |
Availability | % | 98 |
Months | Dhahran | Riyadh | Jeddah | Guriat | Nejran |
---|---|---|---|---|---|
January | 21,842 | 20,452 | 20,258 | 20,635 | 18,981 |
February | 19,591 | 18,271 | 18,275 | 18,475 | 16,936 |
March | 21,368 | 19,884 | 20,067 | 20,155 | 18,515 |
April | 20,234 | 18,840 | 19,196 | 19,110 | 17,730 |
May | 20,420 | 19,029 | 19,655 | 19,407 | 18,107 |
June | 19,449 | 18,182 | 18,913 | 18,559 | 17,385 |
July | 19,963 | 18,668 | 19,429 | 19,031 | 17,840 |
August | 20,040 | 18,705 | 19,437 | 19,049 | 17,883 |
September | 19,690 | 18,386 | 18,918 | 18,661 | 17,552 |
October | 20,746 | 19,429 | 19,736 | 19,665 | 18,525 |
November | 20,562 | 19,295 | 19,300 | 19,538 | 18,195 |
December | 21,679 | 20,335 | 20,143 | 20,568 | 18,957 |
Annual Average | 20,465 | 19,123 | 19,444 | 19,405 | 18,051 |
Factor | Unit | Value |
---|---|---|
Inflation rate | % | 3 |
Discount rate | % | 0 |
Project life | year | 25 |
Debt ratio | % | 25 |
Debt interest rate | % | 0 |
Debt term | year | 20 |
Cities | Net Annual Reduction of GHG Emissions (tCO2) | Cars and Light Trucks Not Used | Hectres of Forest Absorbing Carbon | Peoples Reducing Energy Use by 20% |
---|---|---|---|---|
Dhahran | 180,947 | 33,140 | 41,124 | 180,947 |
Riyadh | 169,077 | 30,967 | 15,551 | 169,077 |
Jeddah | 171,914 | 31,486 | 15,812 | 171,915 |
Guriat | 171,567 | 31,423 | 15,780 | 171,568 |
Nejran | 159,596 | 29,230 | 36,272 | 159,596 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rafique, M.M.; Rehman, S.; Alam, M.M.; Alhems, L.M. Feasibility of a 100 MW Installed Capacity Wind Farm for Different Climatic Conditions. Energies 2018, 11, 2147. https://doi.org/10.3390/en11082147
Rafique MM, Rehman S, Alam MM, Alhems LM. Feasibility of a 100 MW Installed Capacity Wind Farm for Different Climatic Conditions. Energies. 2018; 11(8):2147. https://doi.org/10.3390/en11082147
Chicago/Turabian StyleRafique, M. Mujahid, Shafiqur Rehman, Md. Mahbub Alam, and Luai M. Alhems. 2018. "Feasibility of a 100 MW Installed Capacity Wind Farm for Different Climatic Conditions" Energies 11, no. 8: 2147. https://doi.org/10.3390/en11082147
APA StyleRafique, M. M., Rehman, S., Alam, M. M., & Alhems, L. M. (2018). Feasibility of a 100 MW Installed Capacity Wind Farm for Different Climatic Conditions. Energies, 11(8), 2147. https://doi.org/10.3390/en11082147