Effect of Modified Natural Filler O-Methylene Phosphonic κ-Carrageenan on Chitosan-Based Polymer Electrolytes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of N-Methylene Phosphonic Chitosan and O-Methylene Phosphonic κ-Carrageenan
2.3. Preparation of SPE
2.4. Sample Characterization
3. Results and Discussion
3.1. FTIR Studies of NMPC and OMPk
3.2. NMR Analysis of the NMPC and OMPk Powder
3.3. FTIR Studies of the Polymer Electrolyte Based on NMPC
3.4. Thermal Analysis
3.5. X-ray Diffraction (XRD) Studies
3.6. Mechanical Properties
3.7. Ionic Conductivity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rajendran, S.; Sivakumar, M.; Subadevi, R. Investigations on the effect of various plasticizers in PVA–PMMA solid polymer blend electrolytes. Mater. Lett. 2004, 58, 641–649. [Google Scholar] [CrossRef]
- Wu, G.M.; Lin, S.J.; Yang, C.C. Preparation and characterization of PVA/PAA membranes for solid polymer electrolytes. J. Membr. Sci. 2006, 275, 127–133. [Google Scholar] [CrossRef]
- Rajendran, S.; Mahendran, O. Experimental investigations on plasticized PMMA/PVA polymer blend electrolytes. Ionics 2001, 7, 463–468. [Google Scholar] [CrossRef]
- Ramesh, S.; Winie, T.; Arof, A.K. Investigation of mechanical properties of polyvinyl chloride–polyethylene oxide (PVC–PEO) based polymer electrolytes for lithium polymer cells. Eur. Polym. J. 2007, 43, 1963–1968. [Google Scholar] [CrossRef]
- Wan, Y.; Creber, K.A.M.; Peppley, B.; Bui, V.T. Ionic conductivity of chitosan membranes. Polymer 2003, 44, 1057–1065. [Google Scholar] [CrossRef]
- Jiang, M.; Wang, K.; Kennedy, J.F.; Nie, J.; Yu, Q.; Ma, G. Preparation and characterization of water-soluble chitosan derivative by Michael addition reaction. Int. J. Biol. Macromol. 2010, 47, 696–699. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.-C.; Chou, C.-C.; Li, C.-F. Preparation, water solubility and rheological property of the N-alkylated mono or disaccharide chitosan derivatives. Food Res. Int. 2002, 35, 707–713. [Google Scholar] [CrossRef]
- Jayakumar, R.; Nwe, N.; Tokura, S.; Tamura, H. Sulfated chitin and chitosan as novel biomaterials. Int. J. Biol. Macromol. 2007, 40, 175–181. [Google Scholar] [CrossRef] [PubMed]
- De Britto, D.; Assis, O.B.G. A novel method for obtaining a quaternary salt of chitosan. Carbohydr. Polym. 2007, 69, 305–310. [Google Scholar] [CrossRef]
- Matevosyan, G.L.; Yukha, Y.S.; Zavlin, P.M. Phosphorylation of chitosan. Russ. J. Gen. Chem. 2003, 73, 1725–1728. [Google Scholar] [CrossRef]
- Mobarak, N.N.; Ahmad, A.; Abdullah, M.P.; Ramli, N.; Rahman, M.Y.A. Conductivity enhancement via chemical modification of chitosan based green polymer electrolyte. Electrochim. Acta 2013, 92, 161–167. [Google Scholar] [CrossRef]
- Aziz, N.A.; Majid, S.R.; Arof, A.K. Synthesis and characterizations of phthaloyl chitosan-based polymer electrolytes. J. Non-Cryst. Solids 2012, 358, 1581–1590. [Google Scholar] [CrossRef]
- Datta, P.; Dhara, S.; Chatterjee, J. Hydrogels and electrospun nanofibrous scaffolds of N-methylene phosphonic chitosan as bioinspired osteoconductive materials for bone grafting. Carbohydr. Polym. 2012, 87, 1354–1362. [Google Scholar] [CrossRef]
- Zhu, D.; Yao, K.; Bo, J.; Zhang, H.; Liu, L.; Dong, X.; Song, L.; Leng, X. Hydrophilic/lipophilic N-methylene phosphonic chitosan as a promising non-viral vector for gene delivery. J. Mater. Sci. Mater. Med. 2010, 21, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Rodrìguez, M.S.; Albertengo, L.; Etcheverry, M.; Schulz, P.C. Studies on N-methylene phosphonic chitosan. Colloid Polym. Sci. 2005, 283, 1298–1304. [Google Scholar] [CrossRef]
- Saxena, A.; Kumar, A.; Shahi, V.K. Preparation and characterization of N-methylene phosphonic and quaternized chitosan composite membranes for electrolyte separations. J. Colloid Interface Sci. 2006, 303, 484–493. [Google Scholar] [CrossRef] [PubMed]
- Pandey, G.P.; Hashmi, S.A.; Agrawal, R.C. Hot-press synthesized polyethylene oxide based proton conducting nanocomposite polymer electrolyte dispersed with SiO2 nanoparticles. Solid State Ion. 2008, 179, 543–549. [Google Scholar] [CrossRef]
- Aravindan, V.; Vickraman, P. Polyvinylidenefluoride–hexafluoropropylene based nanocomposite polymer electrolytes (NCPE) complexed with LiPF3(CF3CF2)3. Eur. Polym. J. 2007, 43, 5121–5127. [Google Scholar] [CrossRef]
- Balakumar, S.; Shajan, X.S. Structural and ionic conductivity studies on nanochitosan incorporated polymer electrolytes for rechargeable magnesium batteries. Chem. Sci. Trans. 2012, 1, 311–316. [Google Scholar]
- Jafirin, S.; Ahmad, I.; Ahmad, A. Carboxymethyl cellulose from kenaf reinforced composite polymer electrolytes based 49% poly (methyl methacrylate)-grafted natural rubber. Malays. J. Anal. Sci. 2014, 18, 376–384. [Google Scholar]
- Ramos, V.M.; Rodrıguez, N.M.; Rodrıguez, M.S.; Heras, A.; Agullo, E. Modified chitosan carrying phosphonic and alkyl groups. Carbohydr. Polym. 2003, 51, 425–429. [Google Scholar] [CrossRef]
- Heras, A.; Rodríguez, N.M.; Ramos, V.M.; Agulló, E. N-methylene phosphonic chitosan: A novel soluble derivative. Carbohydr. Polym. 2001, 44, 1–8. [Google Scholar] [CrossRef]
- Binsu, V.V.; Nagarale, R.K.; Shahi, V.K.; Ghosh, P.K. Studies on N-methylene phosphonic chitosan/poly(vinyl alcohol) composite proton-exchange membrane. React. Funct. Polym. 2006, 66, 1619–1629. [Google Scholar] [CrossRef]
- Zhao, D.; Xu, J.; Wang, L.; Du, J.; Dong, K.; Wang, C.; Liu, X. Study of two chitosan derivatives phosphorylated at hydroxyl or amino groups for application as flocculants. J. Appl. Polym. Sci. 2012, 125, E299–E305. [Google Scholar] [CrossRef]
- Mobarak, N.N.; Ramli, N.; Ahmad, A.; Rahman, M.Y.A. Chemical interaction and conductivity of carboxymethyl κ-carrageenan based green polymer electrolyte. Solid State Ion. 2012, 224, 51–57. [Google Scholar] [CrossRef]
- Amaral, I.F.; Granja, P.L.; Barbosa, M.A. Chemical modification of chitosan by phosphorylation: An XPS, FT-IR and SEM study. J. Biomater. Sci. Polym. Ed. 2005, 16, 1575–1593. [Google Scholar] [CrossRef] [PubMed]
- Fadzallah, I.A.; Majid, S.R.; Careem, M.A.; Arof, A.K. A study on ionic interactions in chitosan–oxalic acid polymer electrolyte membranes. J. Membr. Sci. 2014, 463, 65–72. [Google Scholar] [CrossRef]
- Smitha, B.; Sridhar, S.; Khan, A.A. Chitosan–sodium alginate polyion complexes as fuel cell membranes. Eur. Polym. J. 2005, 41, 1859–1866. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, J.; Huang, K.; Zhang, X.; Xu, L.; Shi, Z.-G. Preparation, characterization and application of N-methylene phosphonic acid chitosan grafted magnesia–zirconia stationary phase. Anal. Chim. Acta 2015, 854, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Tranquilan-Aranilla, C.; Nagasawa, N.; Bayquen, A.; Dela Rosa, A. Synthesis and characterization of carboxymethyl derivatives of kappa-carrageenan. Carbohydr. Polym. 2012, 87, 1810–1816. [Google Scholar] [CrossRef]
- Ma, S.; Chen, L.; Liu, X.; Li, D.; Ye, N.; Wang, L. Thermal behavior of carrageenan: Kinetic and characteristic studies. Int. J. Green Energy 2012, 9, 13–21. [Google Scholar] [CrossRef]
- Campo, V.L.; Kawano, D.F.; da Silva, D.B., Jr.; Carvalho, I. Carrageenans: Biological properties, chemical modifications and structural analysis—A review. Carbohydr. Polym. 2009, 77, 167–180. [Google Scholar] [CrossRef]
- Bosco, M.; Segre, A.; Miertus, S.; Cesaro, A.; Paoletti, S. The disordered conformation of kappa-carrageenan in solution as determined by NMR experiments and molecular modeling. Carbohydr. Res. 2005, 340, 943–958. [Google Scholar] [CrossRef] [PubMed]
- Abad, L.V.; Saiki, S.; Nagasawa, N.; Kudo, H.; Katsumura, Y.; De La Rosa, A.M. NMR analysis of fractionated irradiated κ-carrageenan oligomers as plant growth promoter. Radiat. Phys. Chem. 2011, 80, 977–982. [Google Scholar] [CrossRef]
- Pandey, K.; Asthana, N.; Dwivedi, M.M. Study of structural and conduction behaviour in ionic liquid based polymeric electrolyte membrane with layered filler. Eur. J. Adv. Eng. Technol. 2015, 2, 96–101. [Google Scholar]
- Wan, Y.; Creber, K.A.M.; Peppley, B.; Bui, V.T. Synthesis, characterization and ionic conductive properties of phosphorylated chitosan membranes. Macromol. Chem. Phys. 2003, 204, 850–858. [Google Scholar] [CrossRef]
- Yamada, M.; Honma, I. Anhydrous proton conductive membrane consisting of chitosan. Electrochim. Acta 2005, 50, 2837–2841. [Google Scholar] [CrossRef]
- Göktepe, F.; Çelik, S.Ü.; Bozkurt, A. Preparation and the proton conductivity of chitosan/poly(vinyl phosphonic acid) complex polymer electrolytes. J. Non-Cryst. Solids 2008, 354, 3637–3642. [Google Scholar] [CrossRef]
- Jafirin, S.; Ahmad, I.; Ahmad, A. Potential use of cellulose from kenaf in polymer electrolytes based on MG49 rubber composites. Bioresources 2013, 8, 5947–5964. [Google Scholar] [CrossRef]
- Savadekar, N.R.; Karande, V.S.; Vigneshwaran, N.; Bharimalla, A.K.; Mhaske, S.T. Preparation of nano cellulose fibers and its application in kappa-carrageenan based film. Int. J. Biol. Macromol. 2012, 51, 1008–1013. [Google Scholar] [CrossRef] [PubMed]
- Dissanayake, M.A.K.L.; Jayathilaka, P.A.R.D.; Bokalawala, R.S.P.; Albinsson, I.; Mellander, B.E. Effect of concentration and grain size of alumina filler on the ionic conductivity enhancement of the (PEO)9LiCF3SO3: Al2O3 composite polymer electrolyte. J. Power Sources 2003, 119–121, 409–414. [Google Scholar] [CrossRef]
NMPC (g)/1% Acetic Acid (mL) | OMPk (wt %/g)/1% Acetic Acid (mL) |
---|---|
1.0/25 | - |
1.0/25 | 2/0.02/25 |
1.0/25 | 4/0.04/25 |
1.0/25 | 6/0.06/25 |
1.0/25 | 8/0/08/25 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liew, J.W.Y.; Loh, K.S.; Ahmad, A.; Lim, K.L.; Wan Daud, W.R. Effect of Modified Natural Filler O-Methylene Phosphonic κ-Carrageenan on Chitosan-Based Polymer Electrolytes. Energies 2018, 11, 1910. https://doi.org/10.3390/en11071910
Liew JWY, Loh KS, Ahmad A, Lim KL, Wan Daud WR. Effect of Modified Natural Filler O-Methylene Phosphonic κ-Carrageenan on Chitosan-Based Polymer Electrolytes. Energies. 2018; 11(7):1910. https://doi.org/10.3390/en11071910
Chicago/Turabian StyleLiew, Joy Wei Yi, Kee Shyuan Loh, Azizan Ahmad, Kean Long Lim, and Wan Ramli Wan Daud. 2018. "Effect of Modified Natural Filler O-Methylene Phosphonic κ-Carrageenan on Chitosan-Based Polymer Electrolytes" Energies 11, no. 7: 1910. https://doi.org/10.3390/en11071910
APA StyleLiew, J. W. Y., Loh, K. S., Ahmad, A., Lim, K. L., & Wan Daud, W. R. (2018). Effect of Modified Natural Filler O-Methylene Phosphonic κ-Carrageenan on Chitosan-Based Polymer Electrolytes. Energies, 11(7), 1910. https://doi.org/10.3390/en11071910