Enrichment of Hydrogen from a Hydrogen/Propylene Gas Mixture Using ZIF-8/Water-Glycol Slurry
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Apparatus
2.3. Experimental Procedures
2.4. Data Processing
3. Results and Discussion
3.1. Adsorption of Gases with Different ZIF-8 Conditions
3.2. Separation of C3H6/H2 in Different ZIF-8/Liquid Slurries
3.3. Effect of Variable Experimental Parameters on the Separation of C3H6/H2 Using Different ZIF-8/Liquid Media
3.4. Kinetic Study of the H2/C3H6 Separation Process
3.5. Recovery and Reusability of the ZIF-8 Slurry
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Adhikari, S.; Fernando, S.D.; To, S.D.F.; Bricka, R.M.; Steele, P.H.; Haryanto, A. Conversion of Glycerol to Hydrogen via a Steam Reforming Process over Nickel Catalysts. Energy Fuels 2008, 22, 1220–1226. [Google Scholar] [CrossRef]
- Bohme, U.; Barth, B.; Paula, C.; Kuhnt, A.; Schwieger, W.; Mundstock, A.; Caro, J.; Hartmann, M. Ethene/ethane and propene/propane separation via the olefin and paraffin selective metal-organic framework adsorbents CPO-27 and ZIF-8. Langmuir 2013, 29, 8592–8600. [Google Scholar] [CrossRef] [PubMed]
- Faria, W.; Dieguez, L.; Schmal, M. Autothermal reforming of propane for hydrogen production over Pd/CeO2/Al2O3 catalysts. Appl. Catal. B Environ. 2008, 85, 77–85. [Google Scholar] [CrossRef]
- Thomas, J.M.; Raja, R.; Johnson, B.F.; Hermans, S.; Jones, M.D.; Khimyak, T. Bimetallic catalysts and their relevance to the hydrogen economy. Ind. Eng. Chem. Res. 2003, 42, 1563–1570. [Google Scholar] [CrossRef]
- Kolb, G.; Zapf, R.; Hessel, V.; Löwe, H. Propane steam reforming in micro-channels—Results from catalyst screening and optimisation. Appl. Catal. A Gen. 2004, 277, 155–166. [Google Scholar] [CrossRef]
- Mundstock, A.; Wang, N.; Friebe, S.; Caro, J. Propane/propene permeation through Na-X membranes: The interplay of separation performance and pre-synthetic support functionalization. Microporous Mesoporous Mater. 2015, 215, 20–28. [Google Scholar] [CrossRef]
- Zhang, B.; Tang, X.; Li, Y.; Xu, Y.; Shen, W. Hydrogen production from steam reforming of ethanol and glycerol over ceria-supported metal catalysts. Int. J. Hydrog. Energy 2007, 32, 2367–2373. [Google Scholar] [CrossRef]
- Suarez, P.A.Z.; Dullius, J.E.L.; Einloft, S.; Souza, R.F.D.; Dupont, J. The use of new ionic liquids in two-phase catalytic hydrogenation reaction by rhodium complexes. Polyhedron 1996, 15, 1217–1219. [Google Scholar] [CrossRef]
- Ramachandran, R.; Menon, R.K. An overview of industrial uses of hydrogen. Int. J. Hydrog. Energy 1998, 23, 593–598. [Google Scholar] [CrossRef]
- Wang, X.; Li, M.; Li, S.; Wang, H.; Wang, S.; Ma, X. Hydrogen production by glycerol steam reforming with/without calcium oxide sorbent: A comparative study of thermodynamic and experimental work. Fuel Process. Technol. 2010, 91, 1812–1818. [Google Scholar] [CrossRef]
- Jepsen, J.; Milanese, C.; Puszkiel, J.; Girella, A.; Schiavo, B.; Lozano, G.; Capurso, G.; von Colbe, J.B.; Marini, A.; Kabelac, S.; et al. Fundamental Material Properties of the 2LiBH4-MgH2 Reactive Hydride Composite for Hydrogen Storage: (II) Kinetic Properties. Energies 2018, 11, 1170. [Google Scholar] [CrossRef]
- Resini, C.; Herrera Delgado, M.C.; Arrighi, L.; Alemany, L.J.; Marazza, R.; Busca, G. Propene versus propane steam reforming for hydrogen production over Pd-based and Ni-based catalysts. Catal. Commun. 2005, 6, 441–445. [Google Scholar] [CrossRef]
- Resini, C.; Arrighi, L.; Concepcionherreradelgado, M.; Angeleslarrubiavargas, M.; Alemany, L.; Riani, P.; Berardinelli, S.; Marazza, R.; Busca, G. Production of hydrogen by steam reforming of C3 organics over Pd–Cu/γγ-Al2O3 catalyst. Int. J. Hydrog. Energy 2006, 31, 13–19. [Google Scholar] [CrossRef]
- Collins, J.P.; Schwartz, R.W.; Sehgal, R.; Ward, T.L.; Brinker, C.J.; Hagen, G.P.; Udovich, C.A. Catalytic Dehydrogenation of Propane in Hydrogen Permselective Membrane Reactors. Ind. Eng. Chem. Res. 1996, 35, 4398–4405. [Google Scholar] [CrossRef]
- Shigaki, N.; Mogi, Y.; Haraoka, T.; Sumi, I. Reduction of Electric Power Consumption in CO2-PSA with Zeolite 13X Adsorbent. Energies 2018, 11, 900. [Google Scholar] [CrossRef]
- Ockwig, N.W.; Nenoff, T.M. Membranes for Hydrogen Separation. Chem. Rev. 2007, 107, 4078–4110. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Wang, Q.; Zhu, X.; Kong, Q.; Wu, J.; Tu, P. Influence of Hydrogen Sulfide and Redox Reactions on the Surface Properties and Hydrogen Permeability of Pd Membranes. Energies 2018, 11, 1127. [Google Scholar] [CrossRef]
- Dubois, L.; Thomas, D. CO2 Absorption into Aqueous Solutions of Monoethanolamine, Methyldiethanolamine, Piperazine and their Blends. Chem. Eng. Technol. 2009, 32, 710–718. [Google Scholar] [CrossRef]
- Zhang, X.-X.; Xiao, P.; Zhan, C.-H.; Liu, B.; Zhong, R.-Q.; Yang, L.-Y.; Sun, C.-Y.; Liu, H.; Pan, Y.; Chen, G.-J.; et al. Separation of Methane/Ethylene Gas Mixtures Using Wet ZIF-8. Ind. Eng. Chem. Res. 2015, 54, 7890–7898. [Google Scholar] [CrossRef]
- Baker, R.W. Future directions of membrane gas separation technology. Ind. Eng. Chem. Res. 2002, 41, 139–1411. [Google Scholar] [CrossRef]
- O’Reilly, N.; Giri, N.; James, S.L. Porous liquids. Chemistry 2007, 13, 3020–3025. [Google Scholar] [CrossRef] [PubMed]
- Giri, N.; Del Popolo, M.G.; Melaugh, G.; Greenaway, R.L.; Ratzke, K.; Koschine, T.; Pison, L.; Gomes, M.F.; Cooper, A.I.; James, S.L. Liquids with permanent porosity. Nature 2015, 527, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chai, S.H.; Qiao, Z.A.; Mahurin, S.M.; Chen, J.; Fang, Y.; Wan, S.; Nelson, K.; Zhang, P.; Dai, S. Porous liquids: A promising class of media for gas separation. Angew. Chem. Int. Ed. Engl. 2015, 54, 932–936. [Google Scholar] [CrossRef] [PubMed]
- Lei, Z.; Dai, C.; Song, W. Adsorptive absorption: A preliminary experimental and modeling study on CO2 solubility. Chem. Eng. Sci. 2015, 127, 260–268. [Google Scholar] [CrossRef]
- Liu, H.; Liu, B.; Lin, L.C.; Chen, G.; Wu, Y.; Wang, J.; Gao, X.; Lv, Y.; Pan, Y.; Zhang, X.; et al. A hybrid absorption-adsorption method to efficiently capture carbon. Nat. Commun. 2014, 5, 5147. [Google Scholar] [CrossRef] [PubMed]
- Shan, W.; Fulvio, P.F.; Kong, L.; Schott, J.A.; Do-Thanh, C.L.; Tian, T.; Hu, X.; Mahurin, S.M.; Xing, H.; Dai, S. New Class of Type III Porous Liquids: A Promising Platform for Rational Adjustment of Gas Sorption Behavior. ACS Appl. Mater. Interfaces 2018, 10, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Li, H.; Zhang, X.-X.; Zhang, Z.; Tong, X.-S.; Jia, C.-Z.; Liu, B.; Sun, C.-Y.; Yang, L.-Y.; Chen, G.-J. Large-scale synthesis of ZIF-67 and highly efficient carbon capture using a ZIF-67/glycol-2-methylimidazole slurry. Chem. Eng. Sci. 2015, 137, 504–514. [Google Scholar] [CrossRef]
- Liu, H.; Pan, Y.; Liu, B.; Sun, C.; Guo, P.; Gao, X.; Yang, L.; Ma, Q.; Chen, G. Tunable integration of absorption-membrane-adsorption for efficiently separating low boiling gas mixtures near normal temperature. Sci. Rep. 2016, 6, 21114. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O’Keeffe, M.; Yaghi, O.M. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 2008, 319, 939–943. [Google Scholar] [CrossRef] [PubMed]
- Navarro, M.; Seoane, B.; Mateo, E.; Lahoz, R.; de la Fuente, G.F.; Coronas, J. ZIF-8 micromembranes for gas separation prepared on laser-perforated brass supports. J. Mater. Chem. A 2014, 2, 11177–11184. [Google Scholar] [CrossRef]
- Park, K.S.; Ni, Z.; Cote, A.P.; Choi, J.Y.; Huang, R.; Uribe-Romo, F.J.; Chae, H.K.; O’Keeffe, M.; Yaghi, O.M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191. [Google Scholar] [CrossRef] [PubMed]
- Férey, G. Hybrid porous solids: Past, present, future. Chem. Soc. Rev. 2008, 37, 191–214. [Google Scholar] [CrossRef] [PubMed]
- Li, J.R.; Sculley, J.; Zhou, H.C. Metal-organic frameworks for separations. Chem. Rev. 2012, 112, 869–932. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xu, G.; Liu, B.; Lv, X.; Chen, G.; Sun, C.; Xiao, P.; Sun, Y. Molecular Simulation Studies of Flue Gas Purification by Bio-MOF. Energies 2015, 8, 11531–11545. [Google Scholar] [CrossRef]
- Rodenas, T.; Luz, I.; Prieto, G.; Seoane, B.; Miro, H.; Corma, A.; Kapteijn, F.; Xamena, F.X.L.I.; Gascon, J. Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 2015, 14, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yang, Y.; Shen, W.; Kong, X.; Li, P.; Yu, J.; Rodrigues, A.E. Experimental evaluation of adsorption technology for CO2 capture from flue gas in an existing coal-fired power plant. Chem. Eng. Sci. 2013, 101, 615–619. [Google Scholar] [CrossRef]
- Liu, H.; Wang, J.; Chen, G.; Liu, B.; Dandekar, A.; Wang, B.; Zhang, X.; Sun, C.; Ma, Q. High-efficiency separation of a CO2/H2 mixture via hydrate formation in W/O emulsions in the presence of cyclopentane and TBAB. Int. J. Hydrog. Energy 2014, 39, 7910–7918. [Google Scholar] [CrossRef]
No. | p0/kPa | pE/kPa | pE-C3H6/kPa | y1/mol % | x1/mol % | S |
---|---|---|---|---|---|---|
S1 | 331.3 | 247.9 | 7.4 | 3 | 65.1 | 60.3 |
S2 | 335.3 | 197.1 | 5.7 | 2.9 | 75.9 | 105.4 |
S3 | 345.5 | 227.6 | 56.2 | 24.7 | 56.3 | 3.9 |
S4 | 333.3 | 191.0 | 6.1 | 3.2 | 73 | 81.8 |
mF/wt % | p0/kPa | pE/kPa | pE-C3H6/kPa | y1/mol % | x1/mol % | S | η/mPa·s |
---|---|---|---|---|---|---|---|
5.2 | 664.8 | 540.8 | 140.6 | 26.0 | 86.0 | 17.5 | 2.78 |
10.1 | 693.2 | 480.1 | 55.2 | 11.5 | 82.1 | 35.3 | 4.02 |
15.3 | 697.3 | 435.3 | 25.7 | 5.9 | 82.7 | 76.2 | 11.17 |
20.2 | 689.2 | 410.6 | 16.0 | 3.9 | 83.9 | 128.4 | 19.03 |
25.6 | 685.1 | 404.5 | 9.7 | 2.4 | 76.7 | 133.9 | 33.05 |
p0/kPa | pE/kPa | pE-C3H6/kPa | y1/mol % | x1/mol % | S |
---|---|---|---|---|---|
333.3 | 193.0 | 6.2 | 3.2 | 65.6 | 57.7 |
689.2 | 410.6 | 16.0 | 3.9 | 83.9 | 128.4 |
1034.8 | 651.6 | 30.6 | 4.7 | 80.9 | 85.9 |
T | pE/kPa | pE-C3H6/kPa | y1/mol % | x1/mol % | S |
---|---|---|---|---|---|
313.2 | 433.0 | 30.3 | 7.0 | 82.9 | 64.4 |
303.2 | 426.9 | 19.2 | 4.5 | 76.9 | 70.6 |
293.2 | 416.9 | 14.6 | 3.5 | 83.3 | 137.5 |
274.2 | 390.3 | 9.4 | 2.4 | 78.0 | 144.2 |
Repetition Times | p0/kPa | pE/kPa | pE-C3H6/kPa | y1/mol % | x1/mol % | S |
---|---|---|---|---|---|---|
0 | 689.2 | 416.7 | 14.6 | 3.5 | 83.3 | 137.5 |
1 | 685.1 | 410.6 | 15.6 | 3.8 | 84.0 | 132.9 |
2 | 687.3 | 411.7 | 14.8 | 3.6 | 83.8 | 138.5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Gao, X.; Jia, C.; Chen, W.; Liu, B.; Yang, L.; Sun, C.; Chen, G. Enrichment of Hydrogen from a Hydrogen/Propylene Gas Mixture Using ZIF-8/Water-Glycol Slurry. Energies 2018, 11, 1890. https://doi.org/10.3390/en11071890
Li H, Gao X, Jia C, Chen W, Liu B, Yang L, Sun C, Chen G. Enrichment of Hydrogen from a Hydrogen/Propylene Gas Mixture Using ZIF-8/Water-Glycol Slurry. Energies. 2018; 11(7):1890. https://doi.org/10.3390/en11071890
Chicago/Turabian StyleLi, Hai, Xueteng Gao, Chongzhi Jia, Wan Chen, Bei Liu, Lanying Yang, Changyu Sun, and Guangjin Chen. 2018. "Enrichment of Hydrogen from a Hydrogen/Propylene Gas Mixture Using ZIF-8/Water-Glycol Slurry" Energies 11, no. 7: 1890. https://doi.org/10.3390/en11071890
APA StyleLi, H., Gao, X., Jia, C., Chen, W., Liu, B., Yang, L., Sun, C., & Chen, G. (2018). Enrichment of Hydrogen from a Hydrogen/Propylene Gas Mixture Using ZIF-8/Water-Glycol Slurry. Energies, 11(7), 1890. https://doi.org/10.3390/en11071890