Biogas Quality across Small-Scale Biogas Plants: A Case of Central Vietnam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Biogas Technology in Target Area
2.2. Data Collection—Questionnaire Survey
2.3. Data Collection—Biogas Composition
2.4. Data Analysis
3. Results and Discussion
3.1. Feedstock Used for Biogas Production
3.2. Use of Products of Small-Scale Biogas Technology within the Rural Households in Central Vietnam
3.2.1. Biogas for Cooking and Water Boiling
3.2.2. Biogas for Lightning and Power Generation
3.2.3. Digestate
3.3. Biogas Composition in Various Types of Small-Scale Biogas Plant (KT1 and KT2)
3.4. Biogas Composition According to Various Ages of Small-Scale Biogas Plants
3.5. Biogas Composition as Affected by Type, Age, and Capacity of the Biogas Plant
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ahuja, D.; Tatsutani, M. Sustainable energy for developing countries. Surv. Perspect. Integr. Environ. Soc. 2009, 2, 1–16. [Google Scholar]
- Mengistu, M.G.; Simane, B.; Eshete, G.; Workneh, T.S. Factors affecting households’ decisions in biogas technology adoption, the case of Ofla and Mecha Districts, northern Ethiopia. Renew. Energy 2016, 93, 215–227. [Google Scholar] [CrossRef]
- Rahman, M.M.; Hasan, M.M.; Paatero, J.V.; Lahdelma, R. Hybrid application of biogas and solar resources to fulfil household energy needs: A potentially viable option in rural areas of developing countries. Renew. Energy 2014, 68, 35–45. [Google Scholar] [CrossRef]
- Thi, N.B.D.; Lin, C.-Y.; Kumar, G. Waste-to-wealth for valorisation of food waste to hydrogen and methane towards creating a sustainable ideal source of bioenergy. J. Clean. Prod. 2016, 122, 29–41. [Google Scholar] [CrossRef]
- Kinyua, M.N.; Rowse, L.E.; Ergas, S.J. Review of small-scale tubular anaerobic digesters treating livestock waste in the developing world. Renew. Sustain. Energy Rev. 2016, 58, 896–910. [Google Scholar] [CrossRef] [Green Version]
- Roubík, H.; Mazancová, J.; Phung, L.D.; Banout, J. Current approach to manure management for small-scale Southest Asian farmers—Using Vietnamese biogas and non-biogas farms as an example. Renew. Energy 2018, 115, 362–370. [Google Scholar] [CrossRef]
- Huong, L.Q.; Madsen, H.; Anh, L.X.; Ngoc, P.T.; Dalsgaard, A. Hygienic aspects of livestock manure management and biogas systems operated by small-scale pig farmers in Vietnam. Sci. Total Environ. 2014, 470, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Mushtaq, K.; Zaida, A.A.; Askari, S.J. Design and performance analysis of floating dome type portable biogas plant for domestic use in Pakistan. Sustain. Energy Technol. Assess. 2016, 14, 21–25. [Google Scholar] [CrossRef]
- Cu, T.T.T.; Cuong, P.H.; Hang, L.T.; Chao, N.V.; Anh, L.X.; Trach, N.X.; Sommer, S.G. Manure management practices on biogas and non-biogas pig farms in developing countries—Using livestock farms in Vietnam as an example. J. Clean. Prod. 2012, 27, 64–71. [Google Scholar] [CrossRef]
- Rodolfo, S.; Anh, L.H.; Konrad, K. Feasibility assessment of anaerobic digestion technologies for household wastes in Vietnam. J. Vietnam. Environ. 2016, 7, 1–8. [Google Scholar] [CrossRef]
- Chiumenti, A.; Chiumenti, R.; Chiumenti, A. Complete nitrification-denitrification of swine manure in a full-scale, non-conventional composting system. Waste Manag. 2015, 46. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Luo, L.; Skitmore, M. Household carbon emission research: An analytical review of measurement, influencing factors and mitigation prospects. J. Clean. Prod. 2015, 103, 873–883. [Google Scholar] [CrossRef] [Green Version]
- Bruun, S.; Jensen, L.S.; Vu, V.T.K.; Sommer, S. Small-scale household biogas digesters: An option for global warming mitigation or a potential climate bomb? Renew. Sustain. Energy Rev. 2014, 33, 736–741. [Google Scholar] [CrossRef]
- Neupane, M.; Basnyat, B.; Fischer, R.; Froeschl, G.; Wolbers, M.; Rehfuess, E.A. Sustained use of biogas fuel and blood pressure among women in rural Nepal. Environ. Res. 2015, 136, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Mengistu, M.G.; Simane, B.; Eshete, G.; Workneh, T.S. The environmental benefits of domestic biogas technology in rural Ethiopia. Biomass Bioenergy 2016, 90, 131–138. [Google Scholar] [CrossRef]
- Zhang, L.X.; Wang, C.B.; Song, B. Carbon emission reduction potential of a typical household biogas system in rural China. J. Clean. Prod. 2013, 47, 415–421. [Google Scholar] [CrossRef]
- Truc, N.T.T.; Nam, T.S.; Ngan, N.V.C.; Bentzen, J. Factors Influencing the Adoption of Small-scale Biogas Digesters in Developing Countries—Empirical Evidence from Vietnam. Int. Bus. Res. 2017, 10. [Google Scholar] [CrossRef]
- Rajendran, K.; Aslanzadeh, S.; Taherzadeh, J. Household Biogas Digesters—A Review. Energies 2012, 5, 2911–2942. [Google Scholar] [CrossRef] [Green Version]
- Chiumenti, R.; Chiumenti, A.; da Borso, F.; Limina, S. Anaerobic Digestion of Swine Manure in Conventional and Hybrid Pilot Scale Plants: Performance and Gaseous Emissions Reduction. In Proceedings of the International Syposium ASABE 2009, Reno, NV, USA, 21–24 June 2009. [Google Scholar]
- Bhattacharya, S.C.; Jana, C. Renewable energy in India: Historical developments and prospects. Energy 2009, 34, 981–991. [Google Scholar] [CrossRef]
- Roubík, H.; Mazancová, J.; Banout, J.; Verner, V. Addressing problems at small-scale biogas plants: A case study from central Vietnam. J. Clean. Prod. 2016, 112, 2784–2792. [Google Scholar] [CrossRef]
- Thy, S.; Preston, T.R.; Ly, J. Effect of retention time on gas production and fertilizer value of digester effluent. Livest. Res. Rural Dev. 2003, 15. Available online: http://www.lrrd.org/lrrd15/7/sant157.htm (accessed on 2 July 2018).
- Khan, E.U.; Martin, A.R. Optimization of hybrid renewable energy polygeneration system with membrane distillation for rural households in Bangladesh. FUEL 2015, 93, 1116–1127. [Google Scholar] [CrossRef]
- Phanthavongs, S.; Saikia, U. Biogas Digesters in Small Pig Farming Systems in Lao PDR: Evidence of Impact. Livest. Res. Rural Dev. 2013, 25. Available online: http://www.lrrd.org/lrrd25/12/phan25216.htm (accessed on 2 July 2018).
- Katuwal, H.; Bohara, A.K. Biogas: A promising renewable technology and its impact on rural households in Nepal. Renew. Sustain. Energy Rev. 2009, 13, 2668–2674. [Google Scholar] [CrossRef]
- Kaur, G.; Brar, Y.S.; Kothari, D.P. Potential of Livestock Generated Biomass: Untapped Energy Source in India. Energies 2017, 10, 847. [Google Scholar] [CrossRef]
- Usack, J.G.; Wiratni, W.; Angenent, L.T. Improved design of anaerobic digesters for household biogas production in Indonesia: One cow, one digester, and one hour of cooking per day. Sci. World J. 2014, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Abdeshahian, P.; Lim, J.S.; Ho, W.S.; Hashim, H.; Lee, C.T. Potential of biogas production from farm animal waste in Malaysia. Renew. Sustain. Energy Rev. 2016, 60, 714–723. [Google Scholar] [CrossRef]
- Ghmire, P.C. SNV supported domestic biogas programmes in Asia and Africa. Renew. Energy 2013, 49, 90–94. [Google Scholar] [CrossRef]
- Khan, E.U.; Martin, A.R. Review of biogas digester technology in rural Bangladesh. Renew. Sustain. Energy Rev. 2016, 62, 247–259. [Google Scholar] [CrossRef]
- SNV. Biogas Programme in Vietnam, SNV Vietnam. Available online: http://www.snv.org/ (accessed on 1 February 2018).
- Pham, C.H.; Vu, C.C.; Sommer, S.G.; Bruun, S. Factors Affecting Process Temperature and Biogas Production in Small-scale Biogas Digesters in Winter in Northern Vietnam. Asian-Australas. J. Anim. Sci. 2014, 27, 1050–1056. [Google Scholar] [CrossRef] [PubMed]
- Zamorska-Wojdyla, D.; Gaj, K.; Holtra, A.; Sitarska, M. Quality evaluation of biogas and selected methods of its analysis. Ecol. Chem. Eng. 2012, 19, 77–87. [Google Scholar] [CrossRef]
- Rasi, S. Biogas Composition and Upgrading to Biomethane; University of Jyväskylä: Jyväskylä, Finland, 2009; ISBN 978-951-39-3618-1. [Google Scholar]
- Rasi, S.; Lantela, J.; Rintala, J. Trace compounds affecting biogas energy utilization—A review. Energy Convers. Manag. 2011, 52, 3369–3375. [Google Scholar] [CrossRef]
- Nguyen, V.C.N. Small-scale anaerobic digesters in Vietnam—Development and challenges. J. Vietnam. Environ. 2011, 1, 12–18. [Google Scholar] [CrossRef]
- Vu, Q.D.; Tran, T.M.; Nguyen, P.D.; Vu, C.C.; Vu, V.T.K.; Jensen, L.S. Effect of biogas technology on nutrient flows for small- and medium-scale pig farms in Vietnam. Nutr. Cycl. Agroecosyst. 2012, 94, 1–13. [Google Scholar] [CrossRef]
- Sasse, L.; Kellner, C.; Kimaro, A. Improved Biogas Unit for Developing Countries. Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH; Vieweg & Sohn Verlagsgesellschaft Braunschweig: Eschborn, Germany, 1991. [Google Scholar]
- Nhu, T.T.; Dewulf, J.; Serruys, P.; Huysveld, S.; Nguyen, C.V.; Sorgeloos, P.; Schaubroeck, T. Resource usage of integrated Pig-Biogas-Fish system: Partitioning and substitution within attributional life cycle assessment. Resour. Conserv. Recycl. 2015, 102, 27–38. [Google Scholar] [CrossRef]
- Lansing, S.; Botero, R.B.; Martin, J.F. Waste treatment and biogas quality in small-scale agricultural digesters. Bioresour. Technol. 2008, 99, 5881–5890. [Google Scholar] [CrossRef] [PubMed]
- Adegun, I.K.; Yaru, S.S. Cattle Dung Biogas as a Renew. Energy Source for Rural Laboratories. J. Sustain. Technol. 2013, 4, 1–8. [Google Scholar]
- Bond, T.; Templeton, M.R. History and future of domestic biogas plants in the developing world. Energy Sustain. Dev. 2011, 15, 347–354. [Google Scholar] [CrossRef]
- Surendra, K.C.; Takara, D.; Hashimoto, A.G.; Khanal, S.K. Biogas as sustainable energy source for developing countries: Opportunities and challenges. Renew. Sustain. Energy Rev. 2014, 31, 846–859. [Google Scholar] [CrossRef]
- Tumwesige, V.; Fulford, D.; Davidson, G.C. Biogas appliances in Sub-Saharan Africa. Biomass Bioenergy 2014, 70, 40–50. [Google Scholar] [CrossRef]
Country | Most Common Feedstock | Reference |
---|---|---|
Vietnam | Pig manure | [7,21] |
Cambodia | Combination of pig manure and cow manure | [22] |
Bangladesh | Cow and buffaloes manure | [5,23] |
Laos | Cow manure | [24] |
Nepal | Cow manure | [25] |
India | Livestock manure | [26] |
Indonesia | Cow manure | [27,28] |
Variable | Type of the Question | Value | Unit |
---|---|---|---|
Capacity of the digester | Close-ended question | No. | m3 |
Investor of the construction | Close-ended question | SNV/CzDA | - |
Digester type | Close-ended question | KT1/KT2 | - |
Digester connection to the toilet | Open-ended question | - | - |
Animal stable | Open-ended question | - | - |
Feedstock materials for the BGP | Open-ended question | - | - |
No. of animals | Open-ended question | No. | Heads |
No. of other applications powered by biogas | Open-ended question | No. | - |
Digestate practices | Open-ended question | - | - |
Variable | Type of Biogas Plant | Mean | 95% Confidence Interval | |
---|---|---|---|---|
Lower Bound | Upper Bound | |||
CH4 (vol %) | KT1 | 63.79 | 62.94 | 64.63 |
KT2 | 66.23 | 64.70 | 67.76 | |
CO2 (vol %) | KT1 | 30.97 | 30.04 | 31.89 |
KT2 | 28.27 | 26.59 | 29.94 | |
NH3 (vol %) | KT1 | 0.05 | 0.04 | 0.05 |
KT2 | 0.04 | 0.03 | 0.05 | |
H2S (vol %) | KT1 | 0.10 | 0.07 | 0.14 |
KT2 | 0.16 | 0.09 | 0.22 | |
CH:CO2 index | KT1 | 2.14 | 2.02 | 2.25 |
KT2 | 2.24 | 2.03 | 2.44 | |
Calorific value (MJ/m3) | KT1 | 21.60 | 21.31 | 21.89 |
KT2 | 22.36 | 21.84 | 22.88 |
Feedstock | CH4 (vol %) | CO2 (vol %) | N2 (vol %) | CO (vol %) | O2 (vol %) | H2 (vol %) | H2S (vol %) | Type of BGP | Country | Reference |
---|---|---|---|---|---|---|---|---|---|---|
Animal wastewater | 61–72 | - | - | - | - | - | 0.0043–0.0084 | Tubular PVC | Costa Rica | [40] |
Livestock manure | 64 | 34 | 1.05 | 0.3 | - | 0.6 | 0.05 | Floating dome | Pakistan | [8] |
Livestock manure | 56.2 | 39.51 | - | 1.91 | - | - | 1.84 | Laboratory conditions | Nigeria | [41] |
Livestock manure | 50–75 | 25–45 | ˂2 | - | ˂2 | ˂1 | ˂1 | Not specified | Developing countries | [42] |
Livestock manure | 60 | 35–40 | - | - | - | - | - | Not specified | Malaysia | [28] |
Organic waste | 50–75 | 25–50 | - | - | - | - | - | Not specified | Developing countries | [43] |
Organic waste | 60 | - | - | - | - | - | - | Fixed dome | Sub-Saharan Africa | [44] |
Generalized values | 50–75 | 25–50 | ˂2 | ˂2 | ˂2 | ˂1 | ˂2 | - | - | - |
Variable | Small-Scale Biogas Plants Younger than Five Years | Small-Scale Biogas Plants Older than Five Years | ||||
---|---|---|---|---|---|---|
Mean | 95% Confidence Interval | Mean | 95% Confidence Interval | |||
Lower Bound | Upper Bound | Lower Bound | Upper Bound | |||
CH4 (vol %) | 65.44 | 64.58 | 66.30 | 64.57 | 63.05 | 66.09 |
CO2 (vol %) | 29.31 | 28.37 | 32.25 | 29.93 | 28.27 | 31.58 |
NH3 (vol %) | 0.04 | 0.04 | 0.05 | 0.04 | 0.03 | 0.05 |
H2S (vol %) | 0.12 | 0.08 | 0.16 | 0.14 | 0.07 | 0.20 |
CH4:CO2 index | 2.26 | 2.14 | 2.38 | 2.12 | 1.91 | 2.32 |
Calorific value (MJ/m3) | 22.08 | 21.79 | 22.39 | 21.87 | 21.36 | 22.39 |
Dependent Variable | Parameter | Coefficient | Std. Error | t-Value | p |
---|---|---|---|---|---|
CH4 (vol %) | Intercept | 62.02 | 1.92 | 32.32 | 0.00 |
Type of digester a | −2.44 | 0.82 | −2.99 | 0.00 | |
Age b | 0.87 | 0.81 | 1.08 | 0.28 | |
Digester capacity (m3) | 0.52 | 0.22 | 2.36 | 0.02 | |
CO2 (vol %) | Intercept | 30.00 | 2.10 | 14.32 | 0.00 |
Type of digester a | 2.70 | 0.89 | 3.03 | 0.00 | |
Age b | −0.62 | 0.88 | −0.70 | 0.49 | |
Digester capacity (m3) | −0.20 | 0.24 | −0.81 | 0.42 | |
NH3 (vol %) | Intercept | 0.04 | 0.02 | 2.64 | 0.01 |
Type of digester a | 0.01 | 0.01 | 0.81 | 0.42 | |
Age b | 0.00 | 0.01 | 0.67 | 0.51 | |
Digester capacity (m3) | 0.00 | 0.00 | −0.25 | 0.80 | |
H2S (vol %) | Intercept | 0.23 | 0.08 | 2.73 | 0.01 |
Type of digester a | −0.05 | 0.04 | −1.54 | 0.13 | |
Age b | −0.02 | 0.04 | −0.51 | 0.62 | |
Digester capacity (m3) | −0.01 | 0.01 | −0.87 | 0.39 | |
CH4:CO2 index | Intercept | 1.56 | 0.26 | 5.96 | 0.00 |
Type of digester a | −0.10 | 0.11 | −0.87 | 0.39 | |
Age b | 0.14 | 0.11 | 1.29 | 0.20 | |
Digester capacity (m3) | 0.08 | 0.03 | 2.78 | 0.01 | |
Calorific value (MJ/m3) | Intercept | 20.96 | 0.65 | 32.14 | 0.00 |
Type of digester a | −0.76 | 0.28 | −2.73 | 0.01 | |
Age b | 0.21 | 0.27 | 0.77 | 0.45 | |
Digester capacity (m3) | 0.18 | 0.07 | 2.38 | 0.02 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roubík, H.; Mazancová, J.; Le Dinh, P.; Dinh Van, D.; Banout, J. Biogas Quality across Small-Scale Biogas Plants: A Case of Central Vietnam. Energies 2018, 11, 1794. https://doi.org/10.3390/en11071794
Roubík H, Mazancová J, Le Dinh P, Dinh Van D, Banout J. Biogas Quality across Small-Scale Biogas Plants: A Case of Central Vietnam. Energies. 2018; 11(7):1794. https://doi.org/10.3390/en11071794
Chicago/Turabian StyleRoubík, Hynek, Jana Mazancová, Phung Le Dinh, Dung Dinh Van, and Jan Banout. 2018. "Biogas Quality across Small-Scale Biogas Plants: A Case of Central Vietnam" Energies 11, no. 7: 1794. https://doi.org/10.3390/en11071794
APA StyleRoubík, H., Mazancová, J., Le Dinh, P., Dinh Van, D., & Banout, J. (2018). Biogas Quality across Small-Scale Biogas Plants: A Case of Central Vietnam. Energies, 11(7), 1794. https://doi.org/10.3390/en11071794