The Influence of Imports and Exports on the Evolution of Greenhouse Gas Emissions: The Case for the European Union
Abstract
1. Introduction
Literature Review
2. Results and Discussion
3. Material and Methods
3.1. Data Sources
3.2. Variables
3.3. Model
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- European Environment Agency. Approximated EU (European Union) Greenhouse Gas Inventory: Early Estimates for 2011. Available online: https://www.eea.europa.eu//publications/approximated-eu-greenhouse-gas-inventory-2016 (accessed on 20 March 2018).
- European Environment Agency. Greenhouse Gas Emission Trends and Projections in Europe 2012. Available online: https://www.eea.europa.eu/publications/ghg-trends-and-projections-2012 (accessed on 20 March 2018).
- Dietzenbacher, E.; Pei, J.; Yang, C. Trade, production fragmentation, and China’s carbon dioxide emissions. J. Environ. Econ. Manag. 2012, 64, 88–101. [Google Scholar] [CrossRef]
- Degain, C.; Maurer, A. Globalization and Trade Flows: What You See Is Not What You Get! Economic Research and Statistics Division Staff Working Paper ERSD-2010-12; World Trade Organization: Geneva, Switzerland, 2010. [Google Scholar]
- European Comission. Employment and Social Developments in Europe Review. 2012. Available online: http://ec.europa.eu/social/main.jsp?catId=738&langId=en&pubId=7315 (accessed on 16 March 2018).
- Deng, M.; Li, W.; Hu, Y. Decomposing industrial energy-related CO2 emissions in Yunnan province, China: Switching to low-carbon economic growth. Energies 2016, 9, 23. [Google Scholar] [CrossRef]
- Yang, H.; Ma, X.; Xing, Y. Trends in CO2 Emissions from China-Oriented International Marine Transportation Activities and Policy Implications. Energies 2017, 10, 980. [Google Scholar] [CrossRef]
- Li, J.; Zhang, B.; Shi, J. Combining a Genetic Algorithm and Support Vector Machine to Study the Factors Influencing CO2 Emissions in Beijing with Scenario Analysis. Energies 2017, 10, 1520. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Environmental Impacts of a North American Free Trade Agreement; NBER Working Paper No. 3914L; NBER: Cambridge, MA, USA, 1991. [Google Scholar]
- Farhani, S.; Shahbaz, M.; Arouri, M. Panel Analysis of CO2 Emissions, GDP, Energy Consumption, Trade Openness and Urbanization for MENA Countries; MPRA Working Paper 49258; University Library of Munich: Munich, Germany, 2013. [Google Scholar]
- Halicioglu, F. An econometric study of CO2 emissions, energy consumption, income and foreign trade in Turkey. Energy Policy 2009, 37, 1156–1164. [Google Scholar] [CrossRef]
- Kuznets, S. Economic growth and income inequality. Am. Econ. Rev. 1955, 45, l–28. [Google Scholar]
- Shafik, N. Economic development and environmental quality: An econometric analysis. Oxf. Econ. Pap. 1994, 46, 757–773. [Google Scholar] [CrossRef]
- Lantz, V.; Feng, Q. Assessing income, population, and technology impacts on CO2 emissions in Canada: Where’s the EKC? Ecol. Econ. 2006, 57, 229–238. [Google Scholar] [CrossRef]
- Friedl, B.; Getzner, M. Determinants of CO2 emissions in a small open economy. Ecol. Econ. 2003, 45, 133–148. [Google Scholar] [CrossRef]
- Rothman, D.S.; De Bruyn, S.M. Probing into the Environmental Kuznets Curve Hypothesis. Ecol. Econ. 1998, 25, 143–145. [Google Scholar]
- Dinda, S.; Coondoo, D. Income and emission: A panel data-based cointegration analysis. Ecol. Econ. 2006, 57, 167–181. [Google Scholar] [CrossRef]
- Ang, J. CO2 emissions, energy consumption, and output in France. Energy Policy 2007, 35, 4772–4778. [Google Scholar] [CrossRef]
- Acaravci, A.; Ozturk, I. On the relationship between energy consumption, CO2 emissions and economic growth in Europe. Energy 2010, 35, 5412–5420. [Google Scholar] [CrossRef]
- Pao, H.T.; Tsai, C.M. CO2 emissions, energy consumption and economic growth in BRIC countries. Energy Policy 2011, 38, 7850–7860. [Google Scholar] [CrossRef]
- Jalil, A.; Mahmud, S.F. Environment Kuznets curve for CO2 emissions: A cointegration analysis for China. Energy Policy 2009, 37, 5167–5172. [Google Scholar] [CrossRef]
- Apergis, N.; Payne, J.E. The emissions, energy consumption, and economic growth nexus: Evidence from the commonwealth of independent states. Energy Policy 2010, 38, 650–655. [Google Scholar] [CrossRef]
- Hung, M.F.; Shaw, D. Economic Growth and the Environmental Kuznets Curve in Taiwan: A Simultaneity Model Analysis. 2004. Available online: http://www.sinica.edu.tw/econ/dshaw/download/ekc.pdf (accessed on 23 June 2018).
- Soytas, U.; Sari, R.; Ewing, B.T. Energy consumption, income, and carbon emissions in the United States. Ecol. Econ. 2007, 62, 482–489. [Google Scholar] [CrossRef]
- Ozturk, I.; Acaravci, A. CO2 Emissions, Energy Consumption and Economic Growth in Turkey. Renew. Sustain. Energy Rev. 2010, 14, 3220–3225. [Google Scholar] [CrossRef]
- Shahbaz, M.; Solarin, S.A.; Hammoudeh, S.; Shahzad, S.J.H. Bounds testing approach to analyzing the environment Kuznets curve hypothesis with structural beaks: The role of biomass energy consumption in the United States. Energy Econ. 2017, 68, 548–565. [Google Scholar] [CrossRef]
- Boamah, K.B.; Du, J.; Bediako, I.A.; Boamah, A.J.; Abdul-Rasheed, A.A.; Owusu, S.M. Carbon dioxide emission and economic growth of China—The role of international trade. Environ. Sci. Pollut. Res. 2017, 24, 13049–13067. [Google Scholar] [CrossRef] [PubMed]
- Gozgor, G.; Can, M. Export product diversification and the environmental Kuznets curve: Evidence from Turkey. Environ. Sci. Pollut. Res. 2016, 23, 21594–21603. [Google Scholar] [CrossRef] [PubMed]
- Xiong, C.; Yang, D.; Huo, J.; Zhao, Y. The relationship between energy consumption and economic growth and the development strategy of a low-carbon economy in Kazakhstan. J. Arid Land 2015, 7, 706–715. [Google Scholar] [CrossRef]
- Ben Jebli, M.; Ben Youssef, S.; Ozturk, I. The Role of Renewable Energy Consumption and Trade: Environmental Kuznets Curve Analysis for Sub-Saharan Africa Countries. Afr. Dev. Rev. 2015, 27, 288–300. [Google Scholar] [CrossRef]
- Sulaiman, J.; Azman, A.; Saboori, B. Evidence of the environmental Kuznets curve: Implications of industrial trade data. Am. J. Environ. Sci. 2013, 9, 130. [Google Scholar] [CrossRef]
- Lim, H.J.; Yoo, S.H.; Kwak, S.J. Industrial CO2 emissions from energy use in Korea: A structural decomposition analysis. Energy Policy 2009, 37, 686–698. [Google Scholar] [CrossRef]
- Odhiambo, N.M. Economic growth and carbon emissions in South Africa: An Empirical Investigation. Int. Bus. Econ. Res. J. 2011, 10, 75–83. [Google Scholar]
- Akbostanci, E.; Türüt-Asik, S.; Tunç, G.I. A Decomposition analysis of CO2 emissions from energy use: Turkish Case. Energy Policy 2009, 37, 4689–4699. [Google Scholar] [CrossRef]
- Soytas, U.; Sari, R. Energy consumption, economic growth, and carbon emissions: Challenges faced by an EU candidate member. Ecol. Econ. 2009, 68, 1667–1675. [Google Scholar] [CrossRef]
- Jafari, Y.; Othman, J.; Hassan, S.A. Energy consumption, economic growth and environmental pollutants in Indonesia. J. Policy Model. 2012, 34, 879–889. [Google Scholar] [CrossRef]
- Oh, W.; Lee, K. Energy consumption and economic growth in Korea: Testing the causality relation. J. Policy Model. 2004, 26, 973–981. [Google Scholar] [CrossRef]
- Li, J.; Li, Z. A Causality Analysis of Coal Consumption and Economic Growth for India and China. Nat. Resour. 2011, 2, 54–60. [Google Scholar] [CrossRef]
- Zhang, X.P.; Cheng, X.M. Energy consumption, carbon emissions, and economic growth in China. Ecol. Econ. 2009, 68, 2706–2712. [Google Scholar] [CrossRef]
- Tiwari, A.K. Primary energy consumption, CO2 emissions and economic growth: Evidence from India. South East Eur. J. Bus. Econ. 2011, 6, 99–117. [Google Scholar] [CrossRef]
- Vidyarthi, H. Energy consumption, carbon emissions and economic growth in India. World. J. Sci. 2013, 10, 278–287. [Google Scholar] [CrossRef]
- Alam, M.J.; Begum, I.A.; Buysse, J.; Rahman, S.; Huylenbroeck, G.V. Dynamic modeling of causal relationship between energy consumption, CO2 emissions and economic growth in India. Renew. Sustain. Energy Rev. 2011, 15, 3243–3251. [Google Scholar] [CrossRef]
- Wan, L.; Wang, Z.L.; Ng, J.C.Y. Measurement Research on the Decoupling Effect of Industries’ Carbon Emissions—Based on the Equipment Manufacturing Industry in China. Energies 2016, 9, 921. [Google Scholar] [CrossRef]
- Heil, M.T.; Selden, T.M. Panel stationarity with structural breaks: Carbon emissions and GDP. Appl. Econ. Lett. 1999, 6, 223–225. [Google Scholar] [CrossRef]
- Holtz-Eakin, D.; Selden, T.M. Stoking the fires? CO2 emissions and economic growth. J. Public Econ. 1995, 57, 85–101. [Google Scholar] [CrossRef]
- Warr, B.S.; Ayres, R.U. Evidence of causality between the quantity and quality of energy consumption and economic growth. Energy 2010, 35, 1688–1693. [Google Scholar] [CrossRef]
- Yuan, J.H.; Kang, J.G.; Zhao, C.H.; Hu, Z.G. Energy consumption and economic growth: Evidence from China at both aggregated and disaggregated levels. Energy. Econ. 2008, 30, 3077–3094. [Google Scholar] [CrossRef]
- Yu, W. Countermeasures and Influence of Low Carbon Economy upon China Economy Development. Adv. Inf. Sci. Serv. Sci. 2012, 4, 1–12. [Google Scholar]
- Sarkar, M.; Rashid, A.; Alam, K. Nexus between electricity generation and economic growth in Bangladesh. Asian Soc. Sci. 2010, 6, 16–22. [Google Scholar] [CrossRef]
- Talebi, M.; Alvandizade, A.; Roshanroo, M. Granger causality relationship between energy consumption and economic growth in Iran (1980–2009). Interdiscip. J. Contemp. Res. Bus. 2012, 4, 559–570. [Google Scholar]
- Acaravci, A.; Ozturk, I. Electricity consumption and economic growth nexus: A multivariate analysis for Turkey. Amfiteatru Econ. J. 2012, 14, 246–257. [Google Scholar]
- Mehrara, M. Energy consumption and economic growth: The case of oil exporting countries. Energy Policy 2007, 35, 2939–2945. [Google Scholar] [CrossRef]
- Narayan, P.K.; Smyth, R. Energy consumption and real GDP in G7 countries: New evidence from panel cointegration with structural breaks. Energy Econ. 2008, 30, 2331–2341. [Google Scholar] [CrossRef]
- OECD Statistics Portal. Available online: https://stats.oecd.org/glossary/detail.asp?ID=285 (accessed on 9 March 2016).
- Eurostat Database. Available online: http://epp.eurostat.ec.europa.eu/portal/page/portal/region_cities/regional_statistics/data/database (accessed on 16 March 2018).
- Alcantara, V.; Padilla, E. Analysis of CO2 Emissions and Their Explanatory Factors in Different Areas of the World; Working Paper 05.07 2007; Universitat Autònoma de Barcelona: Barcelona, Spain, 2007. (In Spanish) [Google Scholar]
- Observatorio de la Sostenibilidad. Climate Change in Spain: Evidence, Issues and Policies. 2016. Available online: http://www.observatoriosostenibilidad.com/cambio-climatico/ (accessed on 16 March 2018). (In Spanish).
- Hsiao, C.; Pesaran, M.; Tahmiscioglu, A.K. Bayes estimation of short-run coefficients in dynamic panel data models. In Analysis of Panels and Limited Dependent Variables Models; Hsiao, C., Lee, L.F., Lahiri, K., Pesaran, M.H., Eds.; Cambridge University Press: Cambridge, UK, 1999; pp. 268–296. [Google Scholar]
- Hsiao, C.; Pesaran, M.H. Random coefficient panel data models. In The Econometrics of Panel Data—Advances Studies in Theoretical and Applied Econometrics; Mátyás, L., Sevestre, P., Eds.; Springer: Berlin/Heidelberg, Germay, 2008; Volume 46, pp. 185–213. [Google Scholar]
- Maynou, L.; Saez, M.; Bacaria, J.; López-Casasnovas, G. Health inequalities in the European Union: An empirical analysis of the dynamics of regional differences. Eur. J. Health Econ. 2015, 16, 543–559. [Google Scholar] [CrossRef] [PubMed]
- R INLA. Random Walk Model of Order 1 (RW1). Available online: http://www.math.ntnu.no/inla/r-inla.org/doc/latent/rw1.pdf (accessed on 16 March 2018).
- R INLA. Independent Random Noise Model. Available online: http://www.math.ntnu.no/inla/r-inla.org/doc/latent/rw1.pdf (accessed on 16 March 2018).
- Simpson, D.P.; Rue, H.; Martins, T.G.; Riebler, A.; Sørbye, S.H. Penalising model component complexity: A Principled, Practical Approach to Constructing Priors. arXiv. 2015. Available online: http://arxiv.org/abs/1403.4630 (accessed on 16 March 2018).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org/ (accessed on 16 March 2018).
- R INLA Project. Available online: http://www.r-inla.org/home (accessed on 16 March 2018).
- Rue, H.; Martino, S.; Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with discussion). J. R. Stat. Soc. Series B 2009, 71, 319–392. [Google Scholar] [CrossRef]
CO2 Total Equivalent | Base 1990 | Millions of Tonnes | |||
---|---|---|---|---|---|
1992 | 2010 | Variation | 1992 | 2011 | |
Belgium | 100 | 92 | −8.0% | 143,796 | 131,782 |
Bulgaria | 75 | 54 | −28.0% | 80,493 | 60,352 |
Czech Republic | 84 | 71 | −15.5% | 165,609 | 137,423 |
Denmark | 107 | 89 | −16.8% | 73,208 | 61,217 |
Germany | 92 | 75 | −18.5% | 1,153,116 | 943,518 |
Estonia | 68 | 50 | −26.5% | 27,348 | 19,989 |
Ireland | 101 | 111 | 9.9% | 56,020 | 61,493 |
Greece | 101 | 113 | 11.9% | 105,612 | 117,278 |
Spain | 105 | 126 | 20.0% | 297,083 | 348,641 |
France | 103 | 93 | 9.7% | 572,378 | 514,200 |
Italy | 100 | 97 | −3.0% | 517,693 | 500,314 |
Cyprus | 111 | 168 | 51.4% | 6782 | 9444 |
Latvia | 75 | 45 | −40.0% | 19,668 | 12,035 |
Lithuania | 61 | 42 | −31.1% | 30,212 | 21,121 |
Luxembourg | 102 | 94 | −7.8% | 13,222 | 12,252 |
Hungary | 83 | 70 | −15.7% | 82,101 | 67,945 |
Malta | 115 | 149 | 29.6% | 2293 | 2998 |
Netherlands | 102 | 99 | −2.9% | 215,082 | 209,177 |
Austria | 97 | 108 | 11.3% | 75,435 | 85,012 |
Poland | 95 | 88 | −7.4% | 433,380 | 401,670 |
Portugal | 110 | 118 | 7.3% | 67,269 | 71,382 |
Romania | 71 | 48 | −32.4% | 174,050 | 116,621 |
Slovenia | 93 | 106 | 14.0% | 17,202 | 19,482 |
Slovakia | 81 | 64 | −21.0% | 58,271 | 45,896 |
Finland | 95 | 106 | 11.6% | 66,828 | 74,537 |
Sweden | 100 | 91 | −9.0% | 72,518 | 65,487 |
United Kingdom | 98 | 77 | −21.4% | 750,886 | 593,933 |
Iceland | 93 | 130 | 39.8% | 3246 | 4542 |
Norway | 92 | 101 | 9.8% | 45,964 | 53,896 |
Switzerland | 103 | 108 | 4.9% | 54,442 | 54,247 |
Country | Exports of Goods, Services (Millions of Euros) | Exports of Goods (Millions of Euros) | Imports of Goods, Services (Millions of Euros) | Imports of Goods (Millions of Euros) | GDP Per Capita (PPP) | ||||
---|---|---|---|---|---|---|---|---|---|
1997 | 2012 | 1997 | 2012 | 1997 | 2012 | 1997 | 2012 | 2012 | |
Belgium | 170,068.7 | 279,839.3 | 138,442.3 | 219,436.2 | 165,132.6 | 268,800 | 135,837.6 | 212,753.1 | 30,500 |
Bulgaria | 7,745.5 | 17,693.3 | 4980.8 | 13,911 | 6071.9 | 19,932.8 | 4581.7 | 17,262.4 | 12,100 |
Czech Republic | 31,252.1 | 103,967.7 | 23,403.5 | 89,387.5 | 33,608.2 | 91,970.3 | 28,191.6 | 79,153.9 | 20,200 |
Denmark | 65,627.5 | 117,026.1 | 47,044.5 | 67,620.7 | 55,802.4 | 107,927.5 | 38,032.0 | 63,626.2 | 32,000 |
Germany | 525,983.8 | 1,280,999.8 | 450,060.1 | 1,082,263 | 504,253.9 | 1,098,533.1 | 384,567.6 | 893,009.1 | 31,100 |
Estonia | 4041.8 | 12,261.6 | 2455.1 | 9151.9 | 4109.0 | 11,910.2 | 3291.0 | 9729.4 | 17,500 |
Ireland | 59,847.3 | 164,606.4 | 47,418.4 | 85,786.7 | 50,848.1 | 118,637.5 | 30,048.3 | 42,533.4 | 33,200 |
Greece | - | 42,227.5 | - | 21,527.3 | - | 48,178.8 | - | 37,492.7 | 19,200 |
Spain | 155,011.8 | 292,072.5 | 104,927.1 | 203,418.4 | 142,957.8 | 270,293.5 | 115,990.2 | 214,498.9 | 24,900 |
France | 321,454.4 | 504,571.2 | 245,346.1 | 395,906.2 | 289,349.9 | 531,023.4 | 224,291.9 | 439,009.5 | 27,500 |
Italy | 303,418.6 | 414,120.1 | 236,962.1 | 340,798.3 | 263,222.9 | 370,976.6 | 203,160.4 | 299,634.3 | 25,200 |
Cyprus | 4846.5 | 7164.7 | 1246.3 | 1262.2 | 4894.2 | 7183.9 | 3507.6 | 4687.6 | 23,200 |
Latvia | 3635.1 | 9036.7 | 2081.8 | 6459.2 | 3838.5 | 9734.9 | 3107.2 | 8315.4 | - |
Lithuania | 6603.1 | 20,304.1 | 5363.6 | 16,746.3 | 6770.2 | 19,264.4 | 5761.3 | 16,494.4 | 17,800 |
Luxembourg | 24,966.4 | 59,452 | 7435.7 | 11,530 | 20,901.4 | 52,552.5 | 9894.5 | 20,040.5 | 69,400 |
Hungary | 24,766.1 | 94,137.2 | 17,764.6 | 78,885.4 | 24,701.3 | 83,522.4 | 20,304.9 | 71,404.6 | 16,800 |
Malta | - | 5237.3 | - | 2609.8 | - | 4895 | - | 3025.3 | 22,000 |
Netherlands | 227,349.0 | 460,127 | 172,927.0 | 365,204 | 201,457.0 | 407,063 | 146,558.0 | 317,540 | 32,800 |
Austria | 76,485.5 | 156,458.9 | 54,111.1 | 113,260.8 | 78,215.6 | 139,295.7 | 58,911.7 | 112,113 | 33,300 |
Poland | 43,413.6 | 140,364 | 33,701.2 | 115,728.5 | 51,613.8 | 137,552.1 | 45,982.9 | 117,060.3 | 16,800 |
Portugal | 30,821.3 | 55,550.5 | 24,064.0 | 41,128 | 39,368.8 | 56,456.8 | 33,511.8 | 48,212.1 | 19,200 |
Romania | 11,027.2 | 38,586.9 | 9011.6 | 32,442.7 | 11,130.1 | 55,972 | 9110.7 | 49,998.1 | 12,600 |
Slovenia | 9928.9 | 23,411.4 | 7734.4 | 19,200.9 | 10,196.1 | 21,317.8 | 8647.0 | 18,450.3 | 21,000 |
Slovakia | 12,886.1 | 49,738 | 10,597.2 | 46,167.4 | 15,550.8 | 43,589.4 | 13,223.4 | 40,098.2 | 19,200 |
Finland | 38,706.0 | 73,519.8 | 32,075.9 | 55,663.6 | 34,714.7 | 68,341.8 | 25,495.8 | 49,430 | 29,100 |
Sweden | 88,253.3 | 175,379 | 68,521.9 | 12,2240 | 80,670.4 | 152,117.1 | 59,128.8 | 112,148.6 | 32,800 |
United Kingdom | 34,7931.8 | 565,686.6 | 238,584.0 | 338,008.5 | 329,489.1 | 580,067 | 250,988.1 | 440,432.1 | 28,400 |
Iceland | 2837.7 | 5817.7 | 1964.1 | 3504.5 | 2840.9 | 4586.1 | 2064.8 | 2675.2 | 28,700 |
Norway | 95,701.2 | 104,316.9 | 75,268.9 | 75,527.9 | 50,621.2 | 86,102.2 | 32,751.2 | 56,011 | 49,900 |
Switzerland | 101,485.8 | 191,013 | 73,213.3 | 136,455 | 88,621.5 | 156,529.8 | 75,086.6 | 124,688.6 | 40,800 |
Variables | Elasticities | Standard Deviation | 95% Credibility Interval | |
Lower | Upper | |||
Exports of goods | −0.0832 | 0.0251 | −0.1325 | −0.0339 |
Imports of goods | 0.0770 | 0.0243 | 0.0292 | 0.1249 |
Exports of goods and services | −0.0301 | 0.0416 | −0.1118 | 0.0517 |
Imports of goods and services | 0.0269 | 0.0413 | −0.0542 | 0.1080 |
GDP per capita | 0.0007 | 0.0024 | −0.0041 | 0.0054 |
Employment | - | - | - | - |
Total | −0.0066 | 0.0036 | −0.0136 | 0.0003 |
Males | −0.0063 | 0.0034 | −0.0131 | 0.0004 |
Females | −0.0070 | 0.0037 | −0.0143 | 0.0003 |
Economic crisis indicator | −0.0736 | 0.0218 | −0.1169 | −0.0304 |
Random Effects Standard Errors | Mean | 95% Credibility Interval | ||
Lower | Upper | |||
Gaussian observations | 0.0933 | 0.0883 | 0.0989 | |
Country-specific heterogeneity | 1.6369 | 1.3472 | 2.0602 | |
Non-linear trend | 0.0184 | 0.0106 | 0.0410 |
- Shaded grey, the 95% credibility interval did not contain the unity (i.e., statistically significant at 95%). In yellow, the 90% credibility interval did not contain the unity (i.e., statistically significant at 90%).
- Deviance Information Criterion (DIC): −1174.26; Effective number of parameters: 45.97; Watanabe-Akaike information criterion (WAIC): −1166.69; Effective number of parameters: 49.73.
Variables | Elasticities | Standard Deviation | 95% Credibility Interval | |
Lower | Upper | |||
Exports of goods | −0.0672 | 0.0238 | −0.1140 | −0.0204 |
Imports of goods | 0.0610 | 0.0231 | 0.0156 | 0.1064 |
Exports of goods and services | 0.0009 | 0.0407 | −0.0791 | 0.0808 |
Imports of goods and services | −0.0043 | 0.0403 | −0.0836 | 0.0750 |
GDP per capita | 0.0030 | 0.0023 | −0.0015 | 0.0074 |
Employment | - | - | - | - |
Total | −0.0040 | 0.0034 | −0.0106 | 0.0027 |
Males | - | - | - | - |
Females | - | - | - | - |
Economic crisis indicator | −0.0696 | 0.0212 | −0.1125 | −0.0284 |
Random Effects Standard Errors | Mean | 95% Credibility Interval | ||
Lower | Upper | |||
Gaussian observations | 0.0901 | 0.0850 | 0.0957 | |
Country-specific heterogeneity | 0.1080 | 0.0647 | 0.1757 | |
Non-linear trend | 0.0151 | 0.0079 | 0.0387 |
- Shaded grey, the 95% credibility interval did not contain the unity (i.e., statistically significant at 95%).
- Deviance Information Criterion (DIC): −1115.77; Effective number of parameters: 43.10; Watanabe-Akaike information criterion (WAIC): −1109.36; Effective number of parameters: 45.98.
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pié, L.; Fabregat-Aibar, L.; Saez, M. The Influence of Imports and Exports on the Evolution of Greenhouse Gas Emissions: The Case for the European Union. Energies 2018, 11, 1644. https://doi.org/10.3390/en11071644
Pié L, Fabregat-Aibar L, Saez M. The Influence of Imports and Exports on the Evolution of Greenhouse Gas Emissions: The Case for the European Union. Energies. 2018; 11(7):1644. https://doi.org/10.3390/en11071644
Chicago/Turabian StylePié, Laia, Laura Fabregat-Aibar, and Marc Saez. 2018. "The Influence of Imports and Exports on the Evolution of Greenhouse Gas Emissions: The Case for the European Union" Energies 11, no. 7: 1644. https://doi.org/10.3390/en11071644
APA StylePié, L., Fabregat-Aibar, L., & Saez, M. (2018). The Influence of Imports and Exports on the Evolution of Greenhouse Gas Emissions: The Case for the European Union. Energies, 11(7), 1644. https://doi.org/10.3390/en11071644