Magnesium Aminoclay-Fe3O4 (MgAC-Fe3O4) Hybrid Composites for Harvesting of Mixed Microalgae
Abstract
:1. Introduction
2. Results
2.1. Characterization of MgAC-Fe3O4 Hybrid Composites
2.2. Microalgae-Harvesting Efficiencies of MgAC-Fe3O4 Hybrid Composites
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Preparation of Magnesium Aminoclay (MgAC)
4.3. Preparation of Aminoclay-Fe3O4 Hybrid Composites
4.4. Characterization of MgAC-Fe3O4 Hybrid Composites
4.5. Microalgae Cultivation
4.6. Microalgae-Harvesting Procedure
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Wijffels, R.H.; Barbosa, M.J. An outlook on microalgal biofuels. Science 2010, 329, 796–799. [Google Scholar] [CrossRef] [PubMed]
- Lam, M.K.; Lee, K.T. Microalgae biofuels: A critical review of issues, problems and the way forward. Biotechnol. Adv. 2012, 30, 673–690. [Google Scholar] [CrossRef] [PubMed]
- Foley, P.M.; Beach, E.S.; Zimmerman, J.B. Algae as a source of renewable chemicals: Opportunities and challenges. Green Chem. 2011, 13, 1399–1405. [Google Scholar] [CrossRef]
- Luque, R.; Herrero-Davila, L.; Campelo, J.M.; Clark, J.H.; Hidalgo, J.M.; Luna, D.; Marinas, J.M.; Romero, A.A. Biofuels: A technology perspective. Energy Environ. Sci. 2008, 1, 542–564. [Google Scholar] [CrossRef]
- Huang, G.H.; Chen, F.; Wei, D.; Zhang, X.W.; Chen, G. Biodiesel production by microalgae biotechnology. Appl. Energy 2010, 87, 38–46. [Google Scholar] [CrossRef]
- Bui, V.K.H.; Park, D.; Lee, Y.-C. Aminoclays for biological and environmental applications: An updated review. Chem. Eng. J. 2018, 336, 757–775. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Lee, K.; Oh, Y.-K. Recent nanoparticle engineering advances in microalgal cultivation and harvesting processes of biodiesel production: A review. Bioresour. Technol. 2015, 184, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Mann, S.; Burkett, S.L.; Davis, S.A.; Fowler, C.E.; Mendelson, N.H.; Sims, S.D.; Walsh, D.; Whilton, N.T. Sol-gel synthesis of organized matter. Chem. Mater. 1997, 9, 2300–2310. [Google Scholar] [CrossRef]
- Burkett, S.L.; Press, A.; Mann, S. Synthesis, characterication and reactivity of layer inorganic-organic nanocomposites based on 2:1 trioctanhedral phyllosilicates. Chem. Mater. 1997, 9, 1071–1073. [Google Scholar] [CrossRef]
- Whilton, N.T.; Burkett, S.L.; Mann, S. Hybrid lamellar nanocomposites based on organically functionalized magnesium phyllosilicate clays with interlayer reactivity. J. Mater. Chem. 1998, 8, 1927–1932. [Google Scholar] [CrossRef]
- Farooq, W.; Lee, H.U.; Huh, Y.S.; Lee, Y.-C. Chlorella vulgaris cultivation with an additive of magnesium-aminoclay. Algal Res. 2016, 17, 211–216. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Kim, B.; Farooq, W.; Chung, J.; Han, J.-I.; Shin, H.-J.; Jeong, S.H.; Park, J.-Y.; Lee, J.-S.; Oh, Y.-K. Harvesting of oleaginous Chlorella sp. by organoclays. Bioresour. Technol. 2013, 132, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.-M.; Lee, H.U.; Kim, E.J.; Seo, S.; Kim, B.; Lee, G.-W.; Oh, Y.-K.; Kim, J.Y.; Huh, Y.S.; Song, H.A.; Lee, Y.-C. Efficient harvesting of wet blue-green microalgal biomass by two-aminoclay [AC]-mixture systems. Bioresour. Technol. 2016, 15, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-C.; Lee, K.; Hwang, Y.; Andersen, H.R.; Kim, B.; Lee, S.Y.; Choi, M.-H.; Park, J.-Y.; Han, Y.-K.; Oh, Y.-K.; Huh, Y.S. Aminoclay-templated nanoscale zero-valent iron (nZVI) synthesis for efficient harvesting of oleagionous microalga, Chlorella sp. Kr-1. RSC Adv. 2014, 4, 4122–4127. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Huh, Y.S.; Farooq, W.; Chung, J.; Han, J.-I.; Shin, H.-J.; Jeong, S.H.; Lee, J.-S.; Oh, Y.-K.; Park, J.-Y. Lipid extractions from docosahexaenoic acid (DHA)-rich and oleaginous Chlorella sp. biomasses by organic-nanoclays. Bioresour. Technol. 2013, 137, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-C.; Oh, S.Y.; Lee, H.U.; Kim, B.; Lee, S.Y.; Choi, M.-H.; Lee, G.-W.; Park, J.-Y.; Oh, Y.-K.; Ryu, T.; Han, Y.-K.; Chung, K.-S.; Huh, Y.S. Aminoclay-induced humic acid flocculation for efficient harvesting of oleaginous Chlorella sp. Bioresour. Technol. 2014, 153, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-C.; Lee, H.U.; Lee, K.; Kim, B.; Lee, S.Y.; Choi, M.-H.; Farooq, W.; Choi, J.S.; Park, J.-Y.; Lee, J.; Oh, Y.-K.; Huh, Y.S. Aminoclay-conjugated TiO2 synthesis for simultaneous harvesting and wet-disruption of oleaginous Chlorella sp. Chem. Eng. J. 2014, 245, 143–149. [Google Scholar] [CrossRef]
- Xu, L.; Guo, C.; Wang, F.; Zheng, S.; Liu, C.-Z. A simple and rapid harvesting method for microalgae by in situ magnetic separation. Bioresour. Technol. 2011, 102, 10047–10051. [Google Scholar] [CrossRef] [PubMed]
- Datta, K.K.R.; Kulkarni, C.; Eswaramoorthy, M. Aminoclay: A permselective matrix to stabilize copper nanoparticles. Chem. Commun. 2010, 46, 616–618. [Google Scholar] [CrossRef] [PubMed]
- Narayanamoorthy, B.; Datta, K.K.R.; Eswaramoorthy, M.; Balaji, S. Improved oxygen reduction reaction catalyzed by Pt/Clay/Nafion nanocomposite for PEM fuel cells. ACS Appl. Mater. Interfaces 2012, 4, 3620–3626. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Wu, S.; Zhao, N.; Shi, C.; Liu, E.; Li, J. Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium iron battery anode material. ACS Nano 2013, 7, 4459–4469. [Google Scholar] [CrossRef] [PubMed]
- Han, H.-K.; Lee, Y.-C.; Lee, M.-Y.; Patil, A.J.; Shin, H.-J. Magnesium and calcium organophyllosilicates: Synthesis and in vitro cytotoxicity study. ACS Appl. Mater. Interfaces 2011, 3, 2564–2572. [Google Scholar] [CrossRef] [PubMed]
- Kazamia, E.; Aldridge, D.C.; Smith, A.G. Synthetic ecology—A way forward for sustainable algal biofuel production? J. Biotechnol. 2012, 162, 163–169. [Google Scholar] [CrossRef]
- Gao, Z.; Peng, X.; Zhang, H.; Luan, Z.; Fan, B. Montmorillonite–Cu(II)/Fe(III) oxides magnetic material for removal of cyanobacterial Microcystis aeruginosa and its regeneration. Desalination 2009, 247, 337–345. [Google Scholar] [CrossRef]
- Ge, S.; Agbakpe, M.; Wu, Z.; Kuang, L.; Zhang, W.; Wang, X. Influences of surface coating, UV irradiation and magnetic field on the algae removal using magnetite nanoparticles. Environ. Sci. Technol. 2015, 49, 1190–1196. [Google Scholar] [CrossRef] [PubMed]
- Patil, A.J.; Li, M.; Dujardin, E.; Mann, S. Novel bioinorganic nanostructures based on mesolamellar intercalation or single-molecule wrapping of DNA using organoclay building blocks. Nano Lett. 2007, 7, 2660–2665. [Google Scholar] [CrossRef] [PubMed]
- Farooq, W.; Moon, M.; Ryu, B.-G.; Suh, W.I.; Shrivastav, A.; Park, M.S.; Mishra, S.K.; Yang, J.-W. Effect of harvesting methods on the reusability of water for cultivation of Chlorella vulgaris, its lipid productivity and biodiesel quality. Algal Res. 2015, 8, 1–7. [Google Scholar] [CrossRef]
- Na, J.-G.; Lee, H.S.; Oh, Y.-K.; Park, J.-Y.; Ko, C.H.; Lee, S.-H.; Yi, K.B.; Chung, S.H.; Jeon, S.G. Rapid estimation of triacylglycerol content of Chlorella sp. by thermogravimetric analysis. Biotechnol. Lett. 2011, 33, 957–960. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.-L.; Juang, Y.-C.; Liao, G.-Y.; Tsai, P.-W.; Ho, S.-H.; Yeh, K.-L.; Chen, C.-Y.; Chang, J.-S.; Liu, J.-C.; Chen, W.-M.; et al. Harvesting of scenedesmus obliquus FSP-3 using dispersed ozone flotation. Bioresour. Technol. 2011, 102, 82–87. [Google Scholar] [CrossRef] [PubMed]
Sample | #1 | #2 | #3 | #4 | #5 |
---|---|---|---|---|---|
Fe (%) | 72.6 | 77.7 | 82.8 | 86.0 | 94.7 |
Mg (%) | 5.3 | 4.6 | 3.8 | 2.0 | 0.2 |
Si (%) | 2.2 | 1.5 | 1.3 | 1.7 | 0 |
Cl (%) | 19.9 | 16.2 | 12.0 | 9.9 | 5.1 |
Reactants | Sample #1 | Sample #2 | Sample #3 | Sample #4 | Sample #5 |
---|---|---|---|---|---|
MgAC (g/40 mL) | 0.80 | 0.40 | 0.08 | 0.04 | 0 |
Nanosized Fe3O4 by precipitation method (40 mL) | [1.9 g FeCl3•6H2O ⊕ 0.7 g FeCl2•4H2O] | ||||
10 mL NaOH (10 M) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, B.; Bui, V.K.H.; Farooq, W.; Jeon, S.G.; Oh, Y.-K.; Lee, Y.-C. Magnesium Aminoclay-Fe3O4 (MgAC-Fe3O4) Hybrid Composites for Harvesting of Mixed Microalgae. Energies 2018, 11, 1359. https://doi.org/10.3390/en11061359
Kim B, Bui VKH, Farooq W, Jeon SG, Oh Y-K, Lee Y-C. Magnesium Aminoclay-Fe3O4 (MgAC-Fe3O4) Hybrid Composites for Harvesting of Mixed Microalgae. Energies. 2018; 11(6):1359. https://doi.org/10.3390/en11061359
Chicago/Turabian StyleKim, Bohwa, Vu Khac Hoang Bui, Wasif Farooq, Sang Goo Jeon, You-Kwan Oh, and Young-Chul Lee. 2018. "Magnesium Aminoclay-Fe3O4 (MgAC-Fe3O4) Hybrid Composites for Harvesting of Mixed Microalgae" Energies 11, no. 6: 1359. https://doi.org/10.3390/en11061359
APA StyleKim, B., Bui, V. K. H., Farooq, W., Jeon, S. G., Oh, Y.-K., & Lee, Y.-C. (2018). Magnesium Aminoclay-Fe3O4 (MgAC-Fe3O4) Hybrid Composites for Harvesting of Mixed Microalgae. Energies, 11(6), 1359. https://doi.org/10.3390/en11061359