Dynamic Programming-Based Vessel Speed Adjustment for Energy Saving and Emission Reduction
Abstract
:1. Introduction
2. Related Work
3. MapReduce-Based Estimation of Externally Forced Speed Changes for Oceangoing Ships
3.1. Identification of Reference Ships and Associated Information
3.2. Estimation of Externally Forced Speed Changes
4. Energy Consumption and Emission Quantity Estimation
5. The Proposed Optimal Navigation Search Method for Emission and Energy
6. Experiments
7. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Kattner, L.; Mathieu-Üffing, B.; Burrows, J.P.; Richter, A.; Schmolke, S.; Seyler, A.; Wittrock, F. Monitoring Compliance with Sulfur Content Regulations of Shipping Fuel by in Situ Measurements of Ship Emissions. Atmos. Chem. Phys. 2015, 15, 10087–10092. [Google Scholar] [CrossRef]
- Lam, J.S.L.; Lai, K.H. Developing Environmental Sustainability by ANP-QFD approach: The case of Shipping Operations. J. Clean. Prod. 2015, 105, 275–284. [Google Scholar] [CrossRef]
- Kim, J.S.; Jeong, J.S. Extraction of Reference Seaway through Machine Learning of Ship Navigational Data and Trajectory. Int. J. Fuzzy Log. Intell. Syst. 2017, 17, 82–90. [Google Scholar] [CrossRef]
- Bhardwaj, S.; Ozcelebi, T.; Lukkien, J.J.; Lee, K.M. Semantic Interoperability Architecture for Smart Spaces. Int. J. Fuzzy Log. Intell. Syst. 2018, 1, 50–57. [Google Scholar] [CrossRef]
- Kim, K.I.; Lee, K.M. Ship Encounter Risk Evaluation for Coastal Areas with Holistic Maritime Traffic Data Analysis. Adv. Sci. Lett. 2017, 23, 9565–9569. [Google Scholar] [CrossRef]
- Hanssen, G.L.; James, R.W. Optimum ship routing. J. Navig. 1960, 13, 253–272. [Google Scholar] [CrossRef]
- Hagiwara, H. Weather Routing of Sail Assisted Motor Vessels. Ph.D. Thesis, Technical University of Delft, Delft, The Netherlands, 1989. [Google Scholar]
- Jeong, J.S.; Rhyu, K.S. A study on the Optimal Navigation Route Decision using A* algorithm. J. Korean Inst. Off. Autom. 1999, 4, 38–46. [Google Scholar]
- Zhang, J.; Huang, L. Optimal Ship Weather Routing Using Isochrone Method on the Basis of Weather Changes. In Proceedings of the International Conference on Transportation Engineering, Chengdu, China, 22–24 July 2007; Volume 1, pp. 2650–2655. [Google Scholar]
- Choi, K.S.; Park, M.K.; Lee, J.H.; Park, G.I. A study on the Optimum Navigation Route Safety Assessment System using Real Time Weather Forecasting. J. Korean Soc. Mar. Environ. Saf. 2007, 13, 133–140. [Google Scholar]
- Wang, K.; Yan, X.; Yuan, Y.; Li, F. Real-time optimization of ship energy efficiency based on the prediction technology of working condition. Transp. Res. Part D Transp. Environ. 2016, 46, 81–93. [Google Scholar] [CrossRef]
- Du, Y.; Chen, Q.; Lam, J.S.L.; Xu, Y.; Cao, J.X. Modeling the impacts of tides and the virtual arrival policy in berth allocation. Transp. Sci. 2015, 49, 939–956. [Google Scholar] [CrossRef]
- Oil Companies International Marine Forum (OCIMF). Virtual Arrival: Optimizing Voyage Management and Reducing Vessel Emissions—An Emissions Management Framework; Oil Companies International Marine Forum (OCIMF): London, UK, 2010. [Google Scholar]
- Dulebenets, M.A.; Moses, R.; Ozguven, E.E.; Vanli, A. Minimizing Carbon Dioxide Emissions Due to Container Handling at Marine Container Terminals via Hybrid Evolutionary Algorithms. IEEE Access 2017, 5, 8131–8147. [Google Scholar] [CrossRef]
- Browning, L.; Bailey, K. Current Methodologies and Best Practices for Preparing Port Emission. In Proceedings of the 15th International Emission Inventory Conference, New Orleans, LA, USA, 15–18 May 2006. [Google Scholar]
- Yin, Y.; Lam, J.S.L.; Tran, N.K. Review of Emission Accounting Models in the Maritime Industry. In Proceedings of the 40th IAEE International Conference Meeting the Energy Demands of Emerging Economies, Singapore, 18–21 June 2017; International Association for Energy Economics: Cleveland, OH, USA, 2017. [Google Scholar]
- Huang, L.; Bae, Y.C. Periodic Doubling and Chaotic Attractor in the Love Model with a Fourier Series Function as External Force. Int. J. Fuzzy Log. Intell. Syst. 2017, 17, 17–25. [Google Scholar] [CrossRef]
- Brian, G.; Gareth, W.; Duncan, R.J.S.; David, M.I.; Vengatesan, V. Characterization of Tidal Flows at the European Marine Energy Centre in the Absence of Ocean Waves. Energies 2018, 11, 176. [Google Scholar]
- Eva, S.; Rafael, M.; José, A.S. Cost Assessment Methodology and Economic Viability of Tidal Energy Projects. Energies 2017, 10, 1806. [Google Scholar]
- Kim, K.I.; Lee, K.M. Context-Aware Information Provisioning for Vessel Traffic Service Using Rule-Based and Deep Learning Techniques. Int. J. Fuzzy Log. Intell. Syst. 2018, 18, 13–19. [Google Scholar] [CrossRef]
- Shvachko, K.; Kuang, H.; Radia, S.; Chansler, R. The Hadoop Distributed File System. In Mass Storage Systems and Technologies (MSST). In Proceedings of the 2010 IEEE 26th symposium on IEEE 2010, Incline Village, NV, USA, 3–7 May 2010; Volume 1, pp. 1–10. [Google Scholar]
- International Maritime Organization (IMO). Guidelines for the Onboard Operational Use of Shipborne Automatic Identification Systems (AIS); Res A.917; International Maritime Organization (IMO): London, UK, 2002. [Google Scholar]
- Fox, A.; Eichelberger, C.; Hughes, J.; Lyon, S. Spatio-temporal indexing in non-relational distributed databases. In Proceedings of the 2013 IEEE International Conference on Big Data, Silicon Valley, CA, USA, 6–9 October 2013; Volume 1, pp. 291–299. [Google Scholar]
- Dean, J.; Ghemawat, S. MapReduce: Simplified data processing on large clusters. Commun. ACM 2008, 51, 107–113. [Google Scholar] [CrossRef]
- Korean Register. Available online: http://www.krs.co.kr/kor/ship_as_address/regist_search.aspx?s_code=0505010000 (accessed on 16 April 2018).
- Korean Port Management Information System. Available online: https://new.portmis.go.kr/portmis (accessed on 16 April 2018).
- Zhou, J.; Zhou, S.; Zhu, Y. Characterization of Particle and Gaseous Emissions from Marine Diesel Engines with Different Fuels and Impact of After-Treatment Technology. Energies 2017, 10, 1110. [Google Scholar]
- Han, J.; Charpentier, J.F.; Tang, T. An Energy Management System of a Fuel Cell/Battery Hybrid Boat. Energies 2014, 7, 2799–2820. [Google Scholar] [CrossRef] [Green Version]
- Cormen, T.H. Introduction to Algorithms, 3rd ed.; The MIT Press: Cambridge, MA, USA, 2009; pp. 359–413. [Google Scholar]
- Cho, Y.G.; Lee, H.J. A Position and Velocity Estimation Using Multifarious and Multiple Sensor Fusion. Int. J. Fuzzy Log. Intell. Syst. 2017, 17, 121–128. [Google Scholar] [CrossRef]
Ship ID | Length | Cargo Status | Reference Speed |
---|---|---|---|
1 | 174 | Unloaded | 15.970 |
2 | 133 | Unloaded | 13.032 |
3 | 132 | Loaded | 12.118 |
4 | 113 | Loaded | 12.573 |
5 | 143 | Passenger ship | 17.466 |
: | : | : | : |
: | : | : | : |
Ship Index | Ship Type | Length (m) | Tonnage (K/T) | Height (m) | Depth (m) | Location (Geohash) | Course (Direction) | Speed (kt) |
---|---|---|---|---|---|---|---|---|
1 | Cargo | 0–75 | 0–1 | 0–5 | 2–4 | wvcy | N | 10 |
2 | Cargo | 0–75 | 0–1 | 5–10 | 2–4 | wvcz | NE | 11 |
3 | Cargo | 75–150 | 7–8 | 5–10 | 6–8 | wvfn | E | 12 |
4 | Container | 75–150 | 8–9 | 0–5 | 6–8 | wy1b | SE | 13 |
5 | Container | 75–150 | 9–10 | 5–10 | 8–10 | wy1c | E | 14 |
: | : | : | : | : | : | : | : | : |
Marine Environment Index | Current (Direction, kt) | Wave (Direction, m) | Wind (Direction, kt) |
---|---|---|---|
1 | N, 0–0.5 | N, 0–1 | N, 0–5 |
2 | N, 0–0.5 | N, 1–2 | NE, 0–5 |
3 | N, 0–0.5 | N, 2–3 | NE, 5–10 |
4 | N, 0–0.5 | N, 3–4 | NE, 10–15 |
5 | N, 0–0.5 | NE, 0–1 | NE, 15–20 |
6 | N, 0–0.5 | NE, 1–2 | E, 0–5 |
57 | N, 0–0.5 | NE, 2–3 | E, 5–10 |
: | : | : | : |
Engine | PM | CO | HC | |||||
---|---|---|---|---|---|---|---|---|
Diesel | 1.2 | 13.0 | 11.5 | 1.1 | 0.5 | 683 | 0.010 | 0.031 |
Fuel | PM | CO | HC | |||||
---|---|---|---|---|---|---|---|---|
Heavy Fuel Oil | 0.82 | 1.00 | 0.56 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Case | Reference Speed | Reference Speed Energy | DP Speed Energy | Energy Savings (KWh) | Shipping Emission Savings (g) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PM | CO | HC | ||||||||||
Marine environment case 1 (low external forces) | 8 | 3025.8 | 2702.1 | 323.8 (10.7%) | 319 | 4209 | 2085 | 356 | 162 | 221,126 | 3.2 | 10.0 |
9 | 3015.7 | 2681.1 | 334.5 (11.1%) | 329 | 4349 | 2154 | 368 | 167 | 228,492 | 3.3 | 10.4 | |
10 | 2985.3 | 2697.0 | 288.3 (9.5%) | 284 | 3747 | 1856 | 317 | 144 | 196,882 | 2.9 | 8.9 | |
11 | 3003.3 | 2845.0 | 158.3 (5.2%) | 156 | 2058 | 1019 | 174 | 79 | 108,110 | 1.6 | 4.9 | |
12 | 3025.8 | 2986.5 | 39.3 (1.3%) | 39 | 511 | 253 | 43 | 20 | 26,870 | 0.4 | 1.2 | |
13 | 3029.2 | 3006.5 | 22.7 (0.8%) | 22 | 296 | 146 | 25 | 11 | 15,530 | 0.2 | 0.7 | |
Marine environment case 2 (medium external forces) | 8 | 3025.8 | 2922.7 | 103.1 (3.4%) | 101 | 1341 | 664 | 113 | 52 | 70,447 | 1.0 | 3.2 |
9 | 3015.7 | 2936.1 | 79.6 (2.6%) | 78 | 1035 | 513 | 88 | 40 | 54,360 | 0.8 | 2.5 | |
10 | 2985.3 | 2834.9 | 150.4 (5.0%) | 148 | 1955 | 969 | 165 | 75 | 102,737 | 1.5 | 4.7 | |
11 | 3003.3 | 2902.0 | 101.3 (3.3%) | 100 | 1317 | 652 | 111 | 51 | 69,177 | 1.0 | 3.1 | |
12 | 3025.8 | 2979.8 | 46.0 (1.5%) | 45 | 598 | 296 | 51 | 23 | 31,418 | 0.5 | 1.4 | |
13 | 3029.2 | 2991.2 | 38.0 (1.3%) | 37 | 494 | 245 | 42 | 19 | 25,954 | 0.4 | 1.2 | |
Marine environment case 3 (high external forces) | 8 | 3025.8 | 2270.0 | 755.8 (25.0%) | 744 | 9826 | 4868 | 831 | 378 | 516,234 | 7.6 | 23.4 |
9 | 3015.7 | 2381.7 | 634.0 (21.0%) | 624 | 8242 | 4083 | 697 | 317 | 433,000 | 6.3 | 19.7 | |
10 | 2985.3 | 2400.7 | 584.6 (19.3%) | 575 | 7600 | 3765 | 643 | 292 | 399,297 | 5.8 | 18.1 | |
11 | 3003.3 | 2386.7 | 616.6 (20.4%) | 607 | 8016 | 3971 | 678 | 308 | 421,167 | 6.2 | 19.1 | |
12 | 3025.8 | 2605.5 | 420.3 (13.9%) | 414 | 5465 | 2707 | 462 | 210 | 287,097 | 4.2 | 13.0 | |
13 | 3029.2 | 2765.6 | 263.6 (8.7%) | 259 | 3427 | 1698 | 290 | 132 | 180,033 | 2.6 | 8.2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.-I.; Lee, K.M. Dynamic Programming-Based Vessel Speed Adjustment for Energy Saving and Emission Reduction. Energies 2018, 11, 1273. https://doi.org/10.3390/en11051273
Kim K-I, Lee KM. Dynamic Programming-Based Vessel Speed Adjustment for Energy Saving and Emission Reduction. Energies. 2018; 11(5):1273. https://doi.org/10.3390/en11051273
Chicago/Turabian StyleKim, Kwang-Il, and Keon Myung Lee. 2018. "Dynamic Programming-Based Vessel Speed Adjustment for Energy Saving and Emission Reduction" Energies 11, no. 5: 1273. https://doi.org/10.3390/en11051273
APA StyleKim, K.-I., & Lee, K. M. (2018). Dynamic Programming-Based Vessel Speed Adjustment for Energy Saving and Emission Reduction. Energies, 11(5), 1273. https://doi.org/10.3390/en11051273