Exergo-Ecological Assessment of Waste to Energy Plants Supported by Solar Energy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Modeling Approach
2.2. Description and Characteristic of the System
2.3. Thermoeconomic and Thermoecological Analysis
3. Results Exergy and Thermo-Ecological Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Conflicts of Interest
References
- European Parliament and Council. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain directives. Off. J. Eur. Union 2008, 3–30. Available online: http://www.reach-compliance.eu/english/legislation/docs/launchers/waste/launch-2008-98-EC.html (accessed on 11 March 2018).
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: The Role of Waste-to-Energy in the Circular Economy COM/2017/0034. 2017. Available online: http://ec.europa.eu/environment/waste/waste-to-energy.pdf (accessed on 11 March 2018).
- Zhang, D.; Huang, G.; Xu, Y.; Gong, Q. Waste-to-energy in China: Key challenges and opportunities. Energies 2015, 8, 14182–14196. [Google Scholar] [CrossRef]
- Reimann, D.O. CEWEP Energy Report III (Status 2007–2010); Confederation of European Waste-to-Energy Plants: Wurzburg, Germany, 2013; pp. 1–35. [Google Scholar]
- Palstra, S.W.L.; Meijer, H.A.J. Carbon-14 based determination of the biogenic fraction of industrial CO2 emissions—Application and validation. Bioresour. Technol. 2010. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, J.; Silva, V.; Eusébio, D.; Brito, P. Hydrodynamic modelling of municipal solid waste residues in a pilot scale fluidized bed reactor. Energies 2017, 10, 1773. [Google Scholar] [CrossRef]
- Eriksson, O.; Finnveden, G. Energy Recovery from Waste Incineration—The Importance of Technology Data and System Boundaries on CO2 Emissions. Energies 2017, 10, 539. [Google Scholar] [CrossRef]
- Rocco, M.V.; Di Lucchio, A.; Colombo, E. Exergy Life Cycle Assessment of electricity production from Waste-to-Energy technology: A Hybrid Input-Output approach. Appl. Energy 2017, 194, 832–844. [Google Scholar] [CrossRef]
- Lee, S.-H.; Themelis, N.J.; Castaldi, M.J. High-Temperature Corrosion in Waste-to-Energy Boilers. J. Therm. Spray Technol. 2007, 16, 104–110. [Google Scholar] [CrossRef]
- Persson, K.; Broström, M.; Carlsson, J.; Nordin, A.; Backman, R. High temperature corrosion in a 65 MW waste to energy plant. Fuel Process. Technol. 2007, 88, 1178–1182. [Google Scholar] [CrossRef]
- Martin, J.J.E.; Koralewska, R.; Wohlleben, A. Advanced solutions in combustion-based WtE technologies. Waste Manag. 2015, 37, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, L.; Carnevale, E.; Corti, A. A review of technologies and performances of thermal treatment systems for energy recovery from waste. Waste Manag. 2015, 37, 26–44. [Google Scholar] [CrossRef] [PubMed]
- Consonni, S.; Silva, P. Off-design performance of integrated waste-to-energy, combined cycle plants. Appl. Therm. Eng. 2007, 27, 712–721. [Google Scholar] [CrossRef]
- Cucchiella, F.; D’Adamo, I.; Gastaldi, M. The Economic Feasibility of Residential Energy Storage Combined with PV Panels: The Role of Subsidies in Italy. Energies 2017, 10, 1434. [Google Scholar] [CrossRef]
- Lombardi, L.; Mendecka, B.; Carnevale, E. WtE efficiency improvements: Integration with solar thermal energy. In Proceedings of the 5th International Conference on Sustainable Solid Waste Management, Athens, Greece, 21–24 June 2017. [Google Scholar]
- Wang, L.; Yang, Y.; Morosuk, T.; Tsatsaronis, G. Advanced Thermodynamic Analysis and Evaluation of a Supercritical Power Plant. Energies 2012, 5, 1850–1863. [Google Scholar] [CrossRef]
- Cozzolino, R. Thermodynamic Performance Assessment of a Novel Micro-CCHP System Based on a Low Temperature PEMFC Power Unit and a Half-Effect Li/Br Absorption Chiller. Energies 2018, 11, 315. [Google Scholar] [CrossRef]
- Eboh, F.; Ahlström, P.; Richards, T. Exergy Analysis of Solid Fuel-Fired Heat and Power Plants: A Review. Energies 2017, 10, 165. [Google Scholar] [CrossRef]
- Toro, C.; Rocco, M.; Colombo, E. Exergy and Thermoeconomic Analyses of Central Receiver Concentrated Solar Plants Using Air as Heat Transfer Fluid. Energies 2016, 9, 885. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Zhai, R.; Peng, H.; Yang, Y. Exergy destruction analysis of solar tower aided coal-fired power generation system using exergy and advanced exergetic methods. Appl. Therm. Eng. 2016, 108, 339–346. [Google Scholar] [CrossRef]
- Peng, S.; Wang, Z.; Hong, H.; Xu, D.; Jin, H. Exergy evaluation of a typical 330 MW solar-hybrid coal-fired power plant in China. Energy Convers. Manag. 2014, 85, 848–855. [Google Scholar] [CrossRef]
- Manente, G.; Rech, S.; Lazzaretto, A. Optimum choice and placement of concentrating solar power technologies in integrated solar combined cycle systems. Renew Energy 2016, 96, 172–189. [Google Scholar] [CrossRef]
- Baghernejad, A.; Yaghoubi, M. Exergy analysis of an integrated solar combined cycle system. Renew. Energy 2010, 35, 2157–2164. [Google Scholar] [CrossRef]
- Mathkor, R.; Agnew, B.; Al-Weshahi, M.; Latrsh, F. Exergetic Analysis of an Integrated Tri-Generation Organic Rankine Cycle. Energies 2015, 8, 8835–8856. [Google Scholar] [CrossRef]
- Bellos, E.; Tzivanidis, C. Optimization of a Solar-Driven Trigeneration System with Nanofluid-Based Parabolic Trough Collectors. Energies 2017, 10, 848. [Google Scholar] [CrossRef]
- Calise, F.; Capuano, D.; Vanoli, L. Dynamic Simulation and Exergo-Economic Optimization of a Hybrid Solar–Geothermal Cogeneration Plant. Energies 2015, 8, 2606–2646. [Google Scholar] [CrossRef]
- Calise, F.; d’Accadia, M.; Piacentino, A.; Vicidomini, M. Thermoeconomic Optimization of a Renewable Polygeneration System Serving a Small Isolated Community. Energies 2015, 8, 995–1024. [Google Scholar] [CrossRef]
- Usón, S.; Kostowski, W.J.; Stanek, W.; Gazda, W. Thermoecological cost of electricity, heat and cold generated in a trigeneration module fuelled with selected fossil and renewable fuels. Energy 2015, 92, 308–319. [Google Scholar] [CrossRef]
- Szargut, J. Exergy Method: Technical and Ecological Applications; WIT Press: Boston, MA, USA, 2005. [Google Scholar]
- Szargut, J.; Zibik, A.; Stanek, W. Depletion of the non-renewable natural exergy resources as a measure of the ecological cost. Energy Convers. Manag. 2002, 43, 1149–1163. [Google Scholar] [CrossRef]
- Lombardi, L.; Mendecka, B.; Carnevale, E. Comparative life cycle assessment of alternative strategies for energy recovery from used cooking oil. J. Environ. Manag. 2017. [Google Scholar] [CrossRef] [PubMed]
- Mendecka, B.; Lombardi, L.; Kozioł, J. Probabilistic multi-criteria analysis for evaluation of biodiesel production technologies from used cooking oil. Renew. Energy 2017. [Google Scholar] [CrossRef]
- Lombardi, L.; Mendecka, B.; Carnevale, E.; Stanek, W. Environmental impacts of electricity production of micro wind turbines with vertical axis. Renew. Energy 2017. [Google Scholar] [CrossRef]
- Czarnowska, L.; Stanek, W.; Pikoń, K.; Nadziakiewicz, J. Environmental quality evaluation of hard coal using LCA and exergo-ecological cost methodology. Chem. Eng. Trans. 2014, 42, 139–144. [Google Scholar] [CrossRef]
- Stanek, W.; Gazda, W.; Kostowski, W. Thermo-ecological assessment of CCHP (combined cold-heat-and-power) plant supported with renewable energy. Energy 2015, 92, 279–289. [Google Scholar] [CrossRef]
- Soares, T.; Silva, M.; Sousa, T.; Morais, H.; Vale, Z. Energy and Reserve under Distributed Energy Resources Management—Day-Ahead, Hour-Ahead and Real-Time. Energies 2017, 10, 1778. [Google Scholar] [CrossRef]
- Morris, D.R.; Szargut, J. Standard chemical exergy of some elements and compounds on the planet earth. Energy 1986, 11, 733–755. [Google Scholar] [CrossRef]
- Omendra, S.C.K.; Singh, K. Estimation of chemical exergy of solid, liquid and gaseous fuels used in thermal power plants. J. Therm. Anal. Calorim. 2013, 115, 903–908. [Google Scholar] [CrossRef]
- Petela, R. Exergy of undiluted thermal radiation. Sol. Energy 2003, 74, 469–488. [Google Scholar] [CrossRef]
- Stanek, W.; Gazda, W. Exergo-ecological evaluation of adsorption chiller system. Energy 2014, 76, 42–48. [Google Scholar] [CrossRef]
- Saidur, R.; BoroumandJazi, G.; Mekhlif, S.; Jameel, M. Exergy analysis of solar energy applications. Renew. Sustain. Energy Rev. 2012, 16, 350–356. [Google Scholar] [CrossRef]
- Stanek, W. (Ed.) Thermodynamics for Sustainable Management of Natural Resources; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Almutairi, A.; Pilidis, P.; Al-Mutawa, N. Energetic and Exergetic Analysis of Combined Cycle Power Plant: Part-1 Operation and Performance. Energies 2015, 8, 14118–14135. [Google Scholar] [CrossRef]
- Heijungs, R.; Kleijn, R. Numerical approaches towards life cycle interpretation five examples. Int. J. Life Cycle Assess. 2001, 6, 141–148. [Google Scholar] [CrossRef]
Case No. | Steam Parameters | Solar Multiple/Time of Storage | Superheating Power | Storage Tank Size | Heliostat Aperture | Net Electricity Output |
---|---|---|---|---|---|---|
bar/°C | -/h | MW | m3 | m2 | MWh year−1 | |
1 | 51.0/440 | 1.5/6 | 9.8 | 462 | 59,640 | 123,973 |
2 | 1.5/10 | 9.8 | 713 | 59,640 | 123,973 | |
3 | 1.5/14 | 9.8 | 998 | 59,640 | 123,974 | |
4 | 2.0/6 | 9.8 | 571 | 79,440 | 123,998 | |
5 | 2.0/10 | 9.8 | 951 | 79,440 | 124,007 | |
6 | 2.0/14 | 9.8 | 1331 | 79,440 | 124,008 | |
7 | 2.5/6 | 9.8 | 713 | 99,240 | 124,013 | |
8 | 2.5/10 | 9.8 | 1189 | 99,240 | 124,026 | |
9 | 2.5/14 | 9.8 | 1664 | 99,240 | 124,030 | |
10 | 60.0/480 | 1.5/6 | 11.7 | 510 | 70,920 | 133,993 |
11 | 1.5/10 | 11.7 | 882 | 70,920 | 133,994 | |
12 | 1.5/14 | 11.7 | 1235 | 70,920 | 133,994 | |
13 | 2.0/6 | 11.7 | 705 | 94,560 | 134,022 | |
14 | 2.0/10 | 11.7 | 1176 | 94,560 | 134,033 | |
15 | 2.0/14 | 11.7 | 1646 | 94,560 | 134,035 | |
16 | 2.5/6 | 11.7 | 882 | 118,200 | 134,039 | |
17 | 2.5/10 | 11.7 | 1470 | 118,200 | 134,057 | |
18 | 2.5/14 | 11.7 | 2058 | 118,200 | 134,062 | |
19 | 70.0/520 | 1.5/6 | 13.6 | 619 | 83,040 | 144,581 |
20 | 1.5/10 | 13.6 | 1073 | 83,040 | 144,582 | |
21 | 1.5/14 | 13.6 | 1502 | 83,040 | 144,582 | |
22 | 2.0/6 | 13.6 | 858 | 110,640 | 144,616 | |
23 | 2.0/10 | 13.6 | 1430 | 110,640 | 144,628 | |
24 | 2.0/14 | 13.6 | 2002 | 110,640 | 144,630 | |
25 | 2.5/6 | 13.6 | 1073 | 138,360 | 144,636 | |
26 | 2.5/10 | 13.6 | 1788 | 138,360 | 144,654 | |
27 | 2.5/14 | 13.6 | 2503 | 138,360 | 144,662 | |
1* | 51.0/440 | - | 9.8 | - | - | 127,973 |
2* | 60.0/480 | - | 11.7 | - | - | 138,504 |
3* | 70.0/520 | - | 13.6 | - | - | 149,664 |
Chemical Composition | Specific Exergy | ||||
---|---|---|---|---|---|
kJ kg−1 | - | kJ kg−1 | kJ kg−1 | ||
Natural gas [volumetric analysis] | CH4: 96.0; C2H6: 1.3; C3H8: 0.2; N2: 2.5 | 47,941 | 1.036 | 49,686 | |
MSW [ultimate analysis] | C: 27.59; H: 4.23 O: 17.39; S: 0.04; N: 0.67; Cl: 0.26; F: 0.004; Ash: 16.46; H2O: 33.37 | 10,411 | 1.099 | 11,880 |
Subsystem | Exergy Received | Exergy Loss | Second Law Efficiency | Exergy Cost | ||||
---|---|---|---|---|---|---|---|---|
MW | MW | % | MW/MW | |||||
Case No. | Case 1 | Case 27 | Case 1 | Case 27 | Case 1 | Case 27 | Case 1 | Case 27 |
Heliostat | 9.945 | 23.059 | 4.840 | 11.1872 | 51.33 | 51.49 | 1.948 | 1.942 |
Receiver | 5.105 | 11.872 | 2.595 | 6.0391 | 49.17 | 49.13 | 2.034 | 2.035 |
Tank | 2.511 | 5.837 | 0.003 | 0.170 | 99.92 | 98.31 | 1.001 | 1.017 |
Backup system | 5.863 | 3.985 | 2.712 | 1.834 | 53.70 | 53.94 | 1.862 | 1.854 |
Superheater | 5.660 | 7.890 | 0.543 | 0.340 | 90.41 | 97.08 | 1.106 | 1.030 |
WtE boiler | 56.338 | 56.338 | 37.186 | 36.546 | 33.99 | 35.13 | 2.941 | 2.846 |
Steam cycle | 23.650 | 27.342 | 10.690 | 10.828 | 59.84 | 58.31 | 1.715 | 1.656 |
Total | 72.1464 | 83.3831 | 57.994 | 66.869 | 19.62 | 19.80 | 5.0979 | 5.0493 |
Case No. | Steam Parameters | Solar Multiple/Time of Storage | Exergy Received | Exergy Loss | Second Law Efficiency | ||
---|---|---|---|---|---|---|---|
bar/°C | -/h | MSW, MW | Natural Gas, MW | Solar, MW | MW/MW | % | |
1 | 51.0/440 | 1.5/6 | 56.34 | 5.86 | 9.95 | 55.25 | 19.62 |
2 | 1.5/10 | 56.34 | 5.86 | 9.95 | 55.25 | 19.62 | |
3 | 1.5/14 | 56.34 | 5.86 | 9.95 | 55.25 | 19.62 | |
4 | 2.0/6 | 56.34 | 4.41 | 13.24 | 57.10 | 19.13 | |
5 | 2.0/10 | 56.34 | 4.29 | 13.24 | 56.98 | 19.16 | |
6 | 2.0/14 | 56.34 | 4.29 | 13.24 | 56.98 | 19.16 | |
7 | 2.5/6 | 56.34 | 3.27 | 16.55 | 59.27 | 18.59 | |
8 | 2.5/10 | 56.34 | 2.99 | 16.55 | 58.99 | 18.66 | |
9 | 2.5/14 | 56.34 | 2.86 | 16.55 | 58.86 | 18.69 | |
10 | 60.0/480 | 1.5/6 | 56.34 | 6.99 | 11.87 | 57.10 | 20.35 |
11 | 1.5/10 | 56.34 | 6.98 | 11.87 | 57.10 | 20.35 | |
12 | 1.5/14 | 56.34 | 6.98 | 11.87 | 57.10 | 20.35 | |
13 | 2.0/6 | 56.34 | 5.25 | 15.75 | 59.25 | 19.78 | |
14 | 2.0/10 | 56.34 | 5.11 | 15.75 | 59.11 | 19.81 | |
15 | 2.0/14 | 56.34 | 5.11 | 15.75 | 59.11 | 19.82 | |
16 | 2.5/6 | 56.34 | 3.89 | 19.75 | 61.89 | 19.14 | |
17 | 2.5/10 | 56.34 | 3.56 | 19.75 | 61.55 | 19.22 | |
18 | 2.5/14 | 56.34 | 3.41 | 19.75 | 61.40 | 19.26 | |
19 | 70.0/520 | 1.5/6 | 56.34 | 8.17 | 13.81 | 58.96 | 21.06 |
20 | 1.5/10 | 56.34 | 8.17 | 13.81 | 58.95 | 21.06 | |
21 | 1.5/14 | 56.34 | 8.17 | 13.81 | 58.95 | 21.06 | |
22 | 2.0/6 | 56.34 | 6.15 | 18.49 | 61.61 | 20.40 | |
23 | 2.0/10 | 56.34 | 5.98 | 18.49 | 61.45 | 20.44 | |
24 | 2.0/14 | 56.34 | 5.98 | 18.49 | 61.44 | 20.44 | |
25 | 2.5/6 | 56.34 | 4.55 | 23.06 | 64.58 | 19.66 | |
26 | 2.5/10 | 56.34 | 4.17 | 23.06 | 64.20 | 19.76 | |
27 | 2.5/14 | 56.34 | 3.99 | 23.06 | 64.02 | 19.80 |
Case No. | Steam Parameters | Solar Multiple/Time of Storage | Exergy Received | Exergy Loss | Second Law Efficiency | ||
---|---|---|---|---|---|---|---|
bar/°C | -/h | MSW, MW | Natural Gas, MW | Solar, MW | MW/MW | % | |
1* | 51.0/440 | - | 56.34 | 10.57 | - | 52.30 | 21.8 |
2* | 60.0/480 | - | 56.34 | 12.59 | - | 53.11 | 22.9 |
3* | 70.0/520 | - | 56.34 | 14.73 | - | 53.98 | 24.0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendecka, B.; Lombardi, L.; Gładysz, P.; Stanek, W. Exergo-Ecological Assessment of Waste to Energy Plants Supported by Solar Energy. Energies 2018, 11, 773. https://doi.org/10.3390/en11040773
Mendecka B, Lombardi L, Gładysz P, Stanek W. Exergo-Ecological Assessment of Waste to Energy Plants Supported by Solar Energy. Energies. 2018; 11(4):773. https://doi.org/10.3390/en11040773
Chicago/Turabian StyleMendecka, Barbara, Lidia Lombardi, Paweł Gładysz, and Wojciech Stanek. 2018. "Exergo-Ecological Assessment of Waste to Energy Plants Supported by Solar Energy" Energies 11, no. 4: 773. https://doi.org/10.3390/en11040773
APA StyleMendecka, B., Lombardi, L., Gładysz, P., & Stanek, W. (2018). Exergo-Ecological Assessment of Waste to Energy Plants Supported by Solar Energy. Energies, 11(4), 773. https://doi.org/10.3390/en11040773