Energy Exploitation of High-Temperature Geothermal Sources in Volcanic Areas—a Possible ORC Application in Phlegraean Fields (Southern Italy)
Abstract
:1. Introduction
2. Methodology
2.1. Thermodynamic Model
2.2. Geothermal Source Exploitation
2.3. Operating Conditions
3. Results and Discussion
A Possible ORC Domestic Application in the Phlegraean Fields Area
4. Conclusions
Conflicts of Interest
References
- Stempien, J.P.; Chan, S.H. Addressing energy trilemma via the modified Markowitz Mean-Variance Portfolio Optimization theory. Appl. Energy 2017, 202, 228–237. [Google Scholar] [CrossRef]
- Qiu, G. Selection of working fluids for micro-CHP systems with ORC. Renew. Energy 2012, 48, 565–570. [Google Scholar] [CrossRef]
- Qiu, G.; Shao, Y.; Li, J.; Liu, H.; Riffat, S.B. Experimental investigation of a biomass-fired ORC-based micro-CHP for domestic applications. Fuel 2012, 96, 374–382. [Google Scholar] [CrossRef]
- United Nations. Kyoto Protocol to the United Nations Framework Convention on Climate Change. 1998. Available online: http://unfccc.int/kyoto_protocol/items/2830.php (accessed on 3 February 2018).
- United Nations. Paris Agreement. 2015. Available online: http://unfccc.int/paris_agreement/items/9485.php (accessed on 3 February 2018).
- Hong, Y.-Y.; Lai, Y.-M.; Chang, Y.-R.; Lee, Y.-D.; Liu, P.-W. Optimizing Capacities of Distributed Generation and Energy Storage in a Small Autonomous Power System Considering Uncertainty in Renewables. Energies 2015, 8, 2473–2492. [Google Scholar] [CrossRef]
- International Energy Agency. Available online: https://www.iea.org/statistics/ (accessed on 3 February 2018).
- Eurostat. Available online: http://ec.europa.eu/eurostat/web/energy/data (accessed on 3 February 2018).
- The European Parliament and the Council of the European Union. Directive 2009/28/EC of the European Parliament and of the Council. 2009. Available online: http://eur-lex.europa.eu (accessed on 3 February 2018).
- Italian Ministry of Economic Development. Piano di Azione Nazionale per le Energie Rinnovabili (Direttiva 2009/28/CE). 2010. Available online: http://unmig.mise.gov.it (accessed on 3 February 2018).
- European Commission—Joint Research Center. Available online: http://iet.jrc.ec.europa.eu/remea/ (accessed on 3 February 2018).
- Tomasini-Montenegro, C.; Santoyo-Castelazo, E.; Gujba, H.; Romero, R.J.; Santoyo, E. Life cycle assessment of geothermal power generation technologies: An updated review. Appl. Therm. Eng. 2017, 114, 1119–1136. [Google Scholar] [CrossRef]
- Özkaraca, O.; Keçebaş, P.; Demircan, C.; Keçebaş, A. Thermodynamic Optimization of a Geothermal-Based Organic Rankine Cycle System Using an Artificial Bee Colony Algorithm. Energies 2017, 10, 1691. [Google Scholar] [CrossRef]
- Terna. Available online: http://www.terna.it/en-gb/sistemaelettrico.aspx (accessed on 3 February 2018).
- Italiano, F.; De Santis, A.; Favali, P.; Rainone, M.L.; Rusi, S.; Signanini, P. The Marsili Volcanic Seamount (Southern Tyrrhenian Sea): A Potential Offshore Geothermal Resource. Energies 2014, 7, 4068–4086. [Google Scholar] [CrossRef] [Green Version]
- GSE. Available online: https://www.gse.it/en (accessed on 3 February 2018).
- Carlino, S.; Troiano, A.; Di Giuseppe, M.G.; Tramelli, A.; Troise, C.; Somma, R.; De Natale, G. Exploitation of geothermal energy in active volcanic areas: A numerical modelling applied to high temperature Mofete geothermal field, at Campi Flegrei caldera (Southern Italy). Renew. Energy 2016, 87, 54–66. [Google Scholar] [CrossRef]
- Cinti, D.; Procesi, M.; Poncia, P.P. Evaluation of the Theoretical Geothermal Potential of Inferred Geothermal Reservoirs within the Vicano–Cimino and the Sabatini Volcanic Districts (Central Italy) by the Application of the Volume Method. Energies 2018, 11, 142. [Google Scholar] [CrossRef]
- Bertani, R. Geothermal power generation in the world 2010–2014 update report. Geothermics 2016, 60, 31–43. [Google Scholar] [CrossRef]
- Paoletti, V.; Langella, G.; Di Napoli, R.; Amoresano, A.; Meo, S.; Pecoraino, G.; Aiuppa, A. A tool for evaluating geothermal power exploitability and its application to Ischia, Southern Italy. Appl. Energy 2015, 139, 303–312. [Google Scholar] [CrossRef] [Green Version]
- Montanari, D.; Minissale, A.; Doveri, M.; Gola, G.; Trumpy, E.; Santilano, A.; Manzella, A. Geothermal resources within carbonate reservoirs in western Sicily (Italy): A review. Earth-Sci. Rev. 2017, 169, 180–201. [Google Scholar] [CrossRef]
- Corrado, G.; De Lorenzo, S.; Mongelli, F.; Tramacere, A.; Zito, G. Surface heat flow density at the Phlegrean Fields caldera (Southern Italy). Geothermics 1998, 27, 469–484. [Google Scholar] [CrossRef]
- Carlino, S.; Somma, R.; Troise, C.; De Natale, G. The geothermal exploration of Campanian volcanoes: Historical review and future development. Renew. Sustain. Energy Rev. 2012, 16, 1004–1030. [Google Scholar] [CrossRef]
- Gao, T.; Liu, C. Off-Design Performances of Subcritical and Supercritical Organic Rankine Cycles in Geothermal Power Systems under an Optimal Control Strategy. Energies 2017, 10, 1185. [Google Scholar]
- Wu, Z.; Pan, D.; Gao, N.; Zhu, T.; Xie, F. Experimental testing and numerical simulation of scroll expander in a small scale organic Rankine cycle system. Appl. Therm. Eng. 2015, 87, 529–537. [Google Scholar] [CrossRef]
- Li, W.; Feng, X.; Yu, L.J.; Xu, J. Effects of evaporating temperature and internal heat exchanger on Organic Rankine Cycle. Appl. Therm. Eng. 2011, 31, 4014–4023. [Google Scholar] [CrossRef]
- Saleh, B.; Koglbauer, G.; Wendland, M.; Fischer, J. Working fluids for low temperature Organic Rankine Cycles. Energy 2007, 32, 1210–1221. [Google Scholar] [CrossRef]
- Drescher, U.; Bruggemann, D. Fluid selection for the Organic Rankine Cycle (ORC) in biomass power and heat plants. Appl. Therm. Eng. 2007, 7, 223–228. [Google Scholar] [CrossRef]
- Schuster, A.; Karellas, S.; Kakaras, E.; Spliethoff, H. Energetic and economic investigation of Organic Rankine Cycle applications. Appl. Therm. Eng. 2009, 29, 1809–1817. [Google Scholar] [CrossRef]
- Minea, V. Power generation with ORC machines using low-grade waste heat or renewable energy. Appl. Therm. Eng. 2014, 69, 143–154. [Google Scholar] [CrossRef]
- Oyewunmi, O.A.; Markides, C.N. Thermo-Economic and Heat Transfer Optimization of Working-Fluid Mixtures in a Low-Temperature Organic Rankine Cycle System. Energies 2016, 9, 448. [Google Scholar] [CrossRef]
- Algieri, A.; Morrone, P. Energy analysis of Organic Rankine Cycles for biomass applications. Therm. Sci. 2015, 19, 193–205. [Google Scholar] [CrossRef]
- Mikielewicz, D.; Mikielewicz, J. A thermodynamic criterion for selection of working fluid for subcritical and supercritical domestic micro CHP. Appl. Therm. Eng. 2010, 30, 2357–2362. [Google Scholar] [CrossRef]
- Rivera Diaz, A.; Kaya, E.; Zarrouk, S.J. Reinjection in geothermal fields—A worldwide review update. Renew. Sustain. Energy Rev. 2016, 53, 105–162. [Google Scholar] [CrossRef]
- Algieri, A.; Morrone, P. Comparative energetic analysis of high-temperature subcritical and transcritical Organic Rankine Cycle (ORC). A biomass application in the Sibari district. Appl. Therm. Eng. 2012, 36, 236–244. [Google Scholar] [CrossRef]
- Algieri, A.; Morrone, P. Techno-economic analysis of biomass-fired ORC systems for single-family combined heat and power (CHP) applications. Energy Procedia 2014, 45, 1285–1294. [Google Scholar] [CrossRef]
- Algieri, A.; Morrone, P. Energetic analysis of biomass-fired ORC systems for micro-scale combined heat and power (CHP) generation. A possible application to the Italian residential sector. Appl. Therm. Eng. 2014, 71, 751–759. [Google Scholar] [CrossRef]
- Lemmon, E.W.; Huber, M.L.; McLinden, M.O. REFPROP Reference Fluid Thermodynamic and Transport; NIST Online Databases; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2007. [Google Scholar]
- Liu, Q.; Duan, Y.; Yang, Z. Performance analyses of geothermal organic Rankine cycles with selected hydrocarbon working fluids. Energy 2013, 63, 123–132. [Google Scholar] [CrossRef]
- Xi, H.; Li, M.J.; He, Y.L.; Tao, W.Q. A graphical criterion for working fluid selection and thermodynamic system comparison in waste heat recovery. Appl. Therm. Eng. 2015, 89, 772–782. [Google Scholar] [CrossRef]
- Dai, Y.; Wang, J.; Gao, L. Parametric optimization and comparative study of Organic Rankine Cycle (ORC) for low grade waste heat recovery. Energy Convers. Manag. 2009, 50, 576–582. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Zhou, N.J.; Guo, J.; Wang, X.Y. Fluid selection and parametric optimization of organic Rankine cycle using low temperature waste heat. Energy 2012, 40, 107–115. [Google Scholar] [CrossRef]
- Schuster, A.; Karellas, S.; Aumann, R. Efficiency optimization potential in supercritical Organic Rankine Cycles. Energy 2010, 35, 1033–1039. [Google Scholar] [CrossRef]
- Algieri, A.; Šebo, J. Energetic Investigation of Organic Rankine Cycles (ORCs) for the Exploitation of Low-Temperature Geothermal Sources—A possible application in Slovakia. Procedia Comput. Sci. 2017, 109, 833–840. [Google Scholar] [CrossRef]
- Li, J.; Liu, Q.; Ge, Z.; Duan, Y.; Yang, Z. Thermodynamic performance analyses and optimization of subcritical and transcritical organic Rankine cycles using R1234ze(E) for 100–200 °C heat sources. Energy Convers. Manag. 2017, 149, 140–154. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, H.; Guo, T. Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation. Appl. Energy 2011, 88, 2740–2754. [Google Scholar]
- Mazzoldi, A.; Borgia, A.; Ripepe, M.; Marchetti, M.; Ulivieri, G.; della Schiava, M.; Allocca, C. Faults strengthening and seismicity induced by geothermal exploitation on a spreading volcano, Mt. Amiata, Italia. J. Volcanol. Geotherm. Res. 2015, 301, 159–168. [Google Scholar] [CrossRef]
- Kwiatek, G.; Bohnhoff, M.; Dresen, G.; Schulze, A.; Schulte, T.; Zimmermann, G.; Huenges, E. Micro-seismicity induced during fluid-injection: A case study from the geothermal site at GrossSchönebeck, North German Basin. Acta Geophys. 2010, 58, 995–1020. [Google Scholar] [CrossRef]
- Carlino, S.; Somma, R.; Troiano, A.; Di Giuseppe, M.G.; Troise, C.; De Natale, G. The geothermal system of Ischia Island (southern Italy): Critical review and sustainability analysis of geothermal resource for electricity generation. Renew. Energy 2014, 62, 177–196. [Google Scholar] [CrossRef]
- Sasso, M.; Roselli, C.; Sibilio, S.; Possidente, R. Performance Assessment of Residential Cogeneration Systems in Southern Italy. Annex 42 of the International Energy Agency Energy Conservation in Buildings and Community Systems Programme. Available online: http://www.iea-ebc.org (accessed on 3 February 2018).
- Shaneb, O.A.; Coates, G.; Taylor, P.C. Sizing of residential μCHP systems. Energy Build. 2011, 43, 1991–2001. [Google Scholar] [CrossRef]
Isobutane | Isopentane | R245ca | ||
---|---|---|---|---|
Critical conditions | ||||
Critical temperature | [°C] | 134.66 | 187.2 | 174.42 |
Critical pressure | [bar] | 36.29 | 33.78 | 39.25 |
Subcritical cycles | ||||
Condensation temperature | [°C] | 30 | 30 | 30 |
Condensation pressure | [bar] | 4.05 | 1.09 | 1.22 |
Evaporation temperature | [°C] | 70–109 | 70–172 | 70–149 |
Evaporation pressure | [bar] | 10.87–21.78 | 3.56–26.70 | 4.36–25.13 |
Transcritical cycles | ||||
Condensation temperature | [°C] | 30 | 30 | 30 |
Condensation pressure | [bar] | 4.05 | 1.09 | 1.22 |
Maximum temperature | [°C] | 140–220 | 195–220 | 180–220 |
Maximum pressure | [bar] | 37.38 | 34.79 | 40.43 |
Parameters | Units | Values |
---|---|---|
Expander efficiency | [%] | 70 |
Pump efficiency | [%] | 60 |
Internal heat exchanger efficiency | [%] | 95 |
Internal heat exchanger temperature difference | [°C] | 10 |
Boiler and geothermal circuit efficiency | [%] | 90 |
Electro-mechanical efficiency | [%] | 95 |
Cooling pump efficiency | [%] | 80 |
Head of cooling pump | [m] | 10 |
Pinch-point temperature in cooling system | [°C] | 5 |
Minimum reinjection temperature | [°C] | 70 |
Pinch-point temperature in geothermal circuit | [°C] | 10 |
Mass flow rate of geothermal fluid | [kg/s] | 1 |
Temperature of geothermal fluid | [°C] | 230 |
Operating Conditions | Units | Maximum Power | Maximum Efficiency |
---|---|---|---|
Cycle | Transcritical | Transcritical | |
System configuration | With IHE | With IHE | |
Working fluid | R245ca | Isopentane | |
Condensation temperature | [°C] | 30.0 | 30.0 |
Condensation pressure | [bar] | 1.22 | 1.09 |
Maximum temperature | [°C] | 185.0 | 220.0 |
Maximum pressure | [bar] | 40.43 | 34.79 |
Electric power | [kWel] | 91.3 | 55.1 |
Electric efficiency | [%] | 13.6 | 17.7 |
Organic mass flow rate | [kg/s] | 2.37 | 0.60 |
Reinjection temperature | [°C] | 70.0 | 155.7 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Algieri, A. Energy Exploitation of High-Temperature Geothermal Sources in Volcanic Areas—a Possible ORC Application in Phlegraean Fields (Southern Italy). Energies 2018, 11, 618. https://doi.org/10.3390/en11030618
Algieri A. Energy Exploitation of High-Temperature Geothermal Sources in Volcanic Areas—a Possible ORC Application in Phlegraean Fields (Southern Italy). Energies. 2018; 11(3):618. https://doi.org/10.3390/en11030618
Chicago/Turabian StyleAlgieri, Angelo. 2018. "Energy Exploitation of High-Temperature Geothermal Sources in Volcanic Areas—a Possible ORC Application in Phlegraean Fields (Southern Italy)" Energies 11, no. 3: 618. https://doi.org/10.3390/en11030618
APA StyleAlgieri, A. (2018). Energy Exploitation of High-Temperature Geothermal Sources in Volcanic Areas—a Possible ORC Application in Phlegraean Fields (Southern Italy). Energies, 11(3), 618. https://doi.org/10.3390/en11030618