# A Reduced Order Model to Predict Transient Flows around Straight Bladed Vertical Axis Wind Turbines

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Methodology

#### 2.1. High Order Numerical Solver

#### 2.2. A Reduced Order Model for Data Prediction

#### 2.2.1. The Algorithm of HODMD

**Dimension reduction via SVD.**At this step, the spatial dimension J of the data collected is reduced to N linearly independent vectors using a singular value decomposition (SVD) [28]. By doing so, it is possible to clean the noise from the signal and to remove spatial redundancies. SVD is applied to the snapshots matrix (2):$${\mathit{V}}_{1}^{K}\simeq \mathit{U}\phantom{\rule{0.166667em}{0ex}}\Sigma \phantom{\rule{0.166667em}{0ex}}{\mathit{T}}^{\top},$$Then, the reduced snapshots matrix of dimension $N\times K$ can be written as$$\begin{array}{c}{\widehat{\mathit{V}}}_{1}^{K}=\Sigma \phantom{\rule{0.166667em}{0ex}}{\mathit{T}}^{\top},\phantom{\rule{1.em}{0ex}}\phantom{\rule{4.pt}{0ex}}\mathrm{with}\phantom{\rule{4.pt}{0ex}}{\mathit{V}}_{1}^{K}=\mathit{U}{\widehat{\mathit{V}}}_{1}^{K}.\hfill \end{array}$$The standard SVD-error, which determines the number of N SVD modes retained, is estimated for a certain tolerance ${\epsilon}_{1}$ (set by the user) as$$\frac{{\sigma}_{N+1}^{2}+\cdots +{\sigma}_{K}}{{\sigma}_{1}^{2}+\cdots +{\sigma}_{K}}\le {\epsilon}_{1}.$$**The DMD-d approximation.**The reduced snapshot matrix is used to construct the following matrix according to the higher order Koopman assumption$${\widehat{\mathit{V}}}_{d+1}^{K}\simeq {\widehat{\mathit{R}}}_{1}{\widehat{\mathit{V}}}_{1}^{K-d}+{\widehat{\mathit{R}}}_{2}{\widehat{\mathit{V}}}_{2}^{K-d+1}+\dots +{\widehat{\mathit{R}}}_{d}{\widehat{\mathit{V}}}_{d}^{K-1},$$$${a}_{m}/{a}_{1}<{\epsilon}_{2},\phantom{\rule{1.em}{0ex}}m=1,\dots ,M.$$The selection of the modes will be replaced by the selection criterion method [27] presented below for the construction of the HODMD-based ROM (expansion (1)).Once the DMD expansion (1) is approximated, the root mean square error (RMSE) is used to quantify the difference between the original data and the approximated solution (1), following$$RMSE\sim \frac{\left|\right|{\mathit{V}}_{original}-{\mathit{V}}_{DMD}{\left|\right|}_{F}}{\left|\right|{\mathit{V}}_{original}{\left|\right|}_{F}},$$

#### 2.2.2. Criterion Selection Method

## 3. Numerical Results

#### 3.1. Numerical Simulations for a One Bladed Vertical Axis Turbines

#### 3.2. Reduced Order Model for a One Bladed Vertical Axis Turbine

#### 3.3. Extensions for Three Bladed Vertical Axis Turbine

^{−2}rad/s), the errors induced by these modes in the construction of the ROM are negligible (as shown below). It is noticeable that the third mode retained by HODMDc represents the fourth harmonic of the fundamental frequency ${\omega}_{1}$. The last peculiarity was already observed in the one blade turbine case.

## 4. Conclusions

## Author Contributions

## Conflicts of Interest

## Abbreviations

ROM | Reduced Order Model |

DMD | Dynamic Mode Decomposition |

HODMD | High Order Dynamic Mode Decomposition |

DG | Discontinuous Galerkin |

LES | Large Eddy Simulation |

uRANS | unsteady Reynolds Averaged Navier–Stokes |

## References

- Ferrer, E.; Willden, R.H.J. Blade-wake interactions in cross-flow turbines. Int. J. Mar. Energy
**2015**, 11, 71–83. [Google Scholar] [CrossRef] - Eriksson, S.; Bernhoff, H.; Leijon, M. Evaluation of different turbine concepts for wind power. Renew. Sustain. Energy Rev.
**2008**, 12, 1419–1434. [Google Scholar] [CrossRef] - Islam, M.; Ting, D.S.K.; Fartaj, A. Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines. Renew. Sustain. Energy Rev.
**2008**, 12, 1087–1109. [Google Scholar] [CrossRef] - Tjiu, W.; Marnoto, T.; Mat, S.; Ruslan, M.H.; Sopian, K. Darrieus vertical axis wind turbine for power generation I: Assessment of darrieus VAWT configurations. Renew. Energy
**2015**, 75, 50–67. [Google Scholar] [CrossRef] - Muller, G.; Jentsch, M.F.; Stoddart, E. Vertical axis resistance type wind turbines for use in buildings. Renew. Energy
**2009**, 34, 1407–1412. [Google Scholar] - Newman, B.G. Actuator-disc theory for vertical-axis wind turbines. J. Wind Eng. Ind. Aerodyn.
**1983**, 15, 347–355. [Google Scholar] [CrossRef] - Sagaut, P. Large Eddy Simulation for Incompressible Flows: An Introduction; Scientific Computation; Springer: Berlin, Germany, 2001. [Google Scholar]
- Rowley, C.W.; Dawson, S.T.M. Model Reduction for Flow Analysis and Control. Annu. Rev. Fluid Mech.
**2017**, 49, 387–417. [Google Scholar] [CrossRef] - Debnath, M.; Santoni, C.; Leonardi, S.; Iungo, G.V. Towards reduced order modelling for predicting the dynamics of coherent vorticity structures within wind turbine wakes. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
**2017**, 375, 20160108. [Google Scholar] [CrossRef] [PubMed] - Iungo, G.V.; Santoni-Ortiz, C.; Abkar, M.; Porte-Agel, F.; Rotea, M.A.; Leonardi, S. Data-driven Reduced Order Model for prediction of wind turbine wakes. J. Phys. Conf. Ser.
**2015**, 625, 012009. [Google Scholar] [CrossRef] - Le Clainche, S.; Vega, J.M. Higher Order Dynamic Mode Decomposition. SIAM J. Appl. Dyn. Syst.
**2017**, 16, 882–925. [Google Scholar] [CrossRef] - Kou, J.; Le Clainche, S.; Zhang, W. A reduced-order model for compressible flows with buffeting condition using higher order dynamic mode decomposition with a mode selection criterion. Phys. Fluids
**2018**, 30, 016103. [Google Scholar] - Le Clainche, S.; Vega, J.M. Higher order dynamic mode decomposition to identify and extrapolate flow patterns. Phys. Fluids
**2017**, 29, 084102. [Google Scholar] [CrossRef] - Wang, Z.J.; Fidkowski, R.; Abgrall, K.; Bassi, F.; Caraeni, D.; Cary, A.; Deconinck, H.; Hartmann, R.; Hillewaert, K.; Huynh, H.T.; et al. High-order CFD methods: Current status and perspective. Int. J. Numer. Methods Fluids
**2013**, 72, 811–845. [Google Scholar] [CrossRef] - Ferrer, E.; Willden, R.H.J. A high order Discontinuous Galerkin Finite Element solver for the incompressible Navier-Stokes equations. Comput. Fluids
**2011**, 46, 224–230. [Google Scholar] [CrossRef] - Ferrer, E.; Willden, R.H.J. A high order discontinuous Galerkin—Fourier incompressible 3D Navier-Stokes solver with rotating sliding meshes. J. Comput. Phys.
**2012**, 231, 7037–7056. [Google Scholar] [CrossRef] - Ferrer, E. A high Order Discontinuous Galerkin—Fourier Incompressible 3D Navier-Stokes Solver with Rotating Sliding Meshes for Simulating Cross-Flow Turbines. Ph.D. Thesis, University of Oxford, Oxford, UK, 2012. [Google Scholar]
- Ferrer, E.; Moxey, D.; Willden, R.H.J.; Sherwin, S. Stability of projection methods for incompressible flows using high order pressure-velocity pairs of same degree: Continuous and discontinuous Galerkin formulations. Commun. Comput. Phys.
**2014**, 16, 817–840. [Google Scholar] [CrossRef] - Ferrer, E. An interior penalty stabilised incompressible discontinuous Galerkin-Fourier solver for implicit Large Eddy Simulations. J. Comput. Phys.
**2017**, 348, 754–775. [Google Scholar] [CrossRef] - Ferrer, E.; de Vicente, J.; Valero, E. Low cost 3d global instability analysis and flow sensitivity based on dynamic mode decomposition and high-order numerical tools. Int. J. Numer. Methods Fluids
**2014**, 76, 169–184. [Google Scholar] [CrossRef] - González, L.; Ferrer, E.; Diaz-Ojeda, H.R. Onset of three dimensional flow instabilities in lid-driven circular cavities. Wind Eng.
**2017**, 29, 0641022. [Google Scholar] [CrossRef] - Ferrer, E.; Le Clainche, S. Flow scales in cross-flow turbines. In CFD for Wind and Tidal Offshore Turbines; Springer International Publishing: Basel, Switzerland, 2015; pp. 1–11. [Google Scholar]
- Schmid, P.J. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech.
**2010**, 656, 5–28. [Google Scholar] [CrossRef] [Green Version] - Le Clainche, S.; Vega, J.M.; Soria, J. Higher Order Dynamic Mode Decomposition for noisy experimental data: Flow structures on a Zero-Net-Mass-Flux jet. Exp. Therm. Fluid Sci.
**2017**, 88, 336–353. [Google Scholar] [CrossRef] - Le Clainche, S.; Moreno-Ramos, R.; Taylor, P.; Vega, J.M. A new robust method to study flight flutter testing. J. Aircr. Submitted.
- Berkooz, G.; Holmes, P.; Lumley, J. The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech.
**1993**, 25, 539–575. [Google Scholar] [CrossRef] - Kou, J.; Zhang, W. An improved criterion to select dominant modes of dynamic mode decomposition. Eur. J. Mech. B Fluids
**2017**, 62, 109–129. [Google Scholar] [CrossRef] - Sirovich, L. Turbulence and the dynamic of coherent structures, parts I–III. Q. Appl. Math.
**1987**, 45, 561–571. [Google Scholar] [CrossRef] - Le Clainche, S.; Sastre, F.; Vega, J.M.; Velázquez, A. Higher order dynamic mode decomposition applied to postproces a limited amount of PIV data. In Proceedings of the 47th AIAA Fluid Dynamics Conference, AIAA Aviation Forum (AIAA paper 2017-3304), Denver, CO, USA, 5–9 June 2017. [Google Scholar]
- Le Clainche, S.; Pérez, J.M.; Vega, J.M. Spatio-temporal flow structures in the three-dimensional wake of a circular cylinder. Fluid Dyn. Res.
**2018**. [Google Scholar] [CrossRef] - Sayadi, T.; Schmid, P.J.; Richecoeur, F.; Durox, D. Parametrized datadriven decomposition for bifurcation analysis, with application to thermoacoustically unstable systems. Phys. Fluids
**2015**, 27, 037102. [Google Scholar] [CrossRef] - Bazilevs, Y.; Korobenko, A.; Deng, X.; Yan, J.; Kinzel, M.; Dabiri, J.O. Fluid-structure interaction modeling of vertical-axis wind turbines. J. Appl. Mech.
**2014**, 81, 081006. [Google Scholar] [CrossRef] - Consul, C.A.; Willden, R.H.; McIntosh, S.C. Blockage effects on the hydrodynamic performance of a marine cross-flow turbine. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
**2013**, 371, 20120299. [Google Scholar] [CrossRef] [PubMed] - Howell, R.; Qin, N.; Edwards, J.; Durrani, N. Wind tunnel and numerical study of a small vertical axis wind turbine. Wind Eng.
**2010**, 35, 412–422. [Google Scholar] [CrossRef] - Hsu, M.C.; Akkerman, I.; Bazilevs, Y. High-performance computing of wind turbine aerodynamics using isogeometric analysis. Comput. Fluids
**2011**, 49, 93–100. [Google Scholar] [CrossRef] - McLaren, K.; Tullis, S.; Ziada, S. Computational fluid dynamics simulation of the aerodynamics of a high solidity, small-scale vertical axis wind turbine. Wind Energy
**2011**, 15, 349–361. [Google Scholar] [CrossRef] - Qin, N.; Howell, R.; Durrani, N.; Hamada, K.; Smith, T. Unsteady flow simulation and dynamic stall behaviour of vertical axis wind turbine blades. Wind Eng.
**2011**, 35, 511–527. [Google Scholar] [CrossRef] - Fluent Manual—ANSYS Academic Research, Release 16.2; ANSYS, Inc.: Canonsburg, PA, USA, 2015.
- Oler, J.W.; Strickland, J.H.; Im, B.J.; Graham, G.H. Dynamic Stall Regulation of Thedarrieus Turbine; Technical Report, SANDIA REPORT SAND83-7029 UC-261; Sandia National Laboratories: Albuquerque, NM, USA, 1983. [Google Scholar]
- Bremseth, J.; Duraisamy, K. Computational analysis of vertical axis wind turbine arrays. Theor. Comput. Fluid Dyn.
**2016**, 30, 387–401. [Google Scholar] [CrossRef] - Chen, Y.; Lian, Y. Numerical investigation of vortex dynamics in an H-rotor vertical axis wind turbine. Eng. Appl. Comput. Fluid Mech.
**2015**, 1, 21–32. [Google Scholar] [CrossRef] - Deglaire, P.; Engblom, S.; Ågren, O.; Bernhoff, H. Analytical solutions for a single blade in vertical axis turbine motion in two-dimensions. Eur. J. Mech. B Fluids
**2009**, 28, 506–520. [Google Scholar] [CrossRef] - Osterberg, D. Multi-Body Unsteady Aerodynamics in 2D Applied to a Vertical-Axis Wind Turbine Using a Vortex Method; Technical Report; Uppsala University: Uppsala, Sweden, 2010. [Google Scholar]

**Figure 1.**Vertical axis turbine flow fields: (

**a.1**) high order Discontinuous Galerkin mesh with $P=3$ (high order polynomial nodes are shown in red); (

**b.1**) low order mesh; (

**a.2**) high order DG numerical solution (LES) and (

**b.2**) low order numerical solution (uRANS). Contours show streamwise velocity (${u}_{x}$) with 10 levels from 0 to 0.2.

**Figure 2.**Normal force coefficient for a vertical axis turbine: (

**a**) 3D high order DG simulation (LES turbulence model); (

**b**) low order fluent simulation (k-omega SST turbulence model. Both compared to experimental data [39] for four turbine revolutions.

**Figure 3.**Simulations of vertical axis turbine: Flow velocity components at lines: (

**a.1**) streamwise velocity ${u}_{x}$ at $y=-2$ m, (

**a.2**) normal velocity ${u}_{y}$ at $y=-2$ m; (

**b.1**) streamwise velocity ${u}_{x}$ at $y=-4$ m, (

**b.2**) normal velocity ${u}_{y}$ at $y=-4$ m. We include results from the 3D high order DG simulation (LES turbulence model) and from the low order fluent simulation k-omega SST turbulence model.

**Figure 4.**One-blade turbine case: temporal evolution of the streamwise (

**top**) and normal (

**bottom**) velocity fields, ${u}_{x}$ and ${u}_{x}$ for points $P({x}_{1},{y}_{1})=(0,-4)$ (

**left**) and $P({x}_{1},{y}_{1})=(2.8,-2)$ (

**right**) (see the computational domain in Figure 1).

**Figure 5.**One-blade turbine case: growth rates (

**left**) and amplitudes (

**right**) vs. frequencies of the DMD modes. Circles represent the modes selected by HODMDc for constructing the HODMD-based Reduced Order Model (ROM) and crosses represent the transient modes, omitted in the DMD expansion (1).

**Figure 6.**One-blade wind turbine case: streamwise (

**left**) and normal (

**right**) velocities, ${u}_{x}$ and ${u}_{y}$, of the instantaneous flow field at time instant 240 s. Two-dimensional $x-y$ cross section at z $=0.9375$ m.

**Figure 7.**One-blade wind turbine case: temporal evolution of streamwise (

**left**) and normal (

**right**) velocities in $y=-4$ m at time instant 240 s. From top to bottom: HODMD-based ROM constructed using M = 3, 5 and 21 DMD modes. Continuous black line and blue circles represent the original and the predicted solution, respectively.

**Figure 9.**Counterpart of Figure 4 in the three-blades turbine in points $P({x}_{1},{y}_{1})=(0,-4)$ (

**left**) and $P({x}_{1},{y}_{1})=(2\sqrt{2},2\sqrt{2})$ (

**right**).

**Figure 10.**Counterpart of Figure 5 in the three-blades turbine applying HODMD in 196 snapshots starting at time $80.1$ s.

**Figure 11.**Counterpart of Figure 6 in the three-blades turbine applying HODMD in 196 snapshots starting at time $80.1$ s.

**Figure 12.**Counterpart of Figure 7 in the three-blades turbine applying HODMD in 196 snapshots starting at time $80.1$ s. Data extracted at $y=2\sqrt{2}$ m.

**Figure 13.**Counterpart of Figure 7 in the three-blades turbine applying HODMD in 196 snapshots starting at time $80.1$ s. Data extracted at $y=2\sqrt{2}$ m.

**Figure 14.**Counterpart of Figure 5 the three-blades turbine applying HODMD in 145 snapshots starting at time $25.604$ s.

**Figure 15.**Counterpart of Figure 6 in the three-blades turbine applying HODMD in 145 snapshots starting at time $25.604$ s.

**Figure 16.**Counterpart of Figure 7 in the three-blades turbine applying HODMD in 145 snapshots starting at time $25.604$ s. Data extracted at $y=-4$ m.

**Figure 17.**Counterpart of Figure 7 in the three-blades turbine applying HODMD in 145 snapshots starting at time $25.604$ s. Data extracted at $y=2\sqrt{2}$ m.

**Table 1.**Numerical details of the Navier–Stokes computations for a one bladed rotating turbine. The out-of-plane length (marked *) for the high order mesh is discretised using 64 Fourier planes. The high order mesh (marked **) includes the number of elements and the polynomial order P = 3 and 64 Fourier planes for the 3D mesh. For the low order model (marked ***), almost identical results were obtained with a finer mesh of 31,584 elements.

High Order Solver | Low Order Fluent | |
---|---|---|

Blade/Mesh movement | Sliding mesh | Sliding mesh |

Numerical scheme | 3D DG-Fourier | 2D Finite Volume |

Out-of-plane length | 0.5 m * | 0 m |

Turbulence model | Large Eddy Simulation | k-omega SST (uRANS) |

Numerical details | polynomial order P = 3 | Second order Upwind |

Order of accuracy | 3 | 2 |

Mesh size | 1.1 millions ** | 7896 *** |

Time advancement | 2nd order semi-implicit | 1st order implicit |

Time step | 0.001 s | 0.2 s |

**Table 2.**Vertical axis turbine conditions. All in international metric system. $TSR=\omega D/2U$ denotes the tip-speed ratio, $R{e}_{c}=\frac{c}{\nu}\sqrt{{(\omega D/2)}^{2}+{U}^{2}}$ is the Reynolds number based on the chord and rotating speed whilst $R{e}_{D}=\frac{DU}{\nu}$ is based on the turbine diameter and free stream velocity .

Blade | Turb. | Length | Stream | Rot. | Tip Speed | Kin. | Reynolds | ||
---|---|---|---|---|---|---|---|---|---|

Chord | Diameter | Ratio | Vel. | Speed | Ratio | Visc | |||

Symbol | c | D | $c/D$ | U | $\omega $ | $TSR$ | $\nu $ | $R{e}_{c}$ | $R{e}_{D}$ |

Units | m | m | - | m/s | rad/s | - | m^{2}/s | - | - |

Oler et al. [39] | 0.1524 | 1.22 | 0.125 | 0.091 | 0.749 | 5 | $0.1\times {10}^{-5}$ | $6.83\times {10}^{4}$ | $1.07\times {10}^{5}$ |

Simulations | 1.0 | 8.0 | 0.125 | 0.088 | 0.11 | 5 | $5.0\times {10}^{-5}$ | $0.90\times {10}^{4}$ | $0.14\times {10}^{5}$ |

**Table 3.**Frequencies selected by HODMDc (in rad/s) presented in Figure 5.

m | ${\mathit{\delta}}_{\mathit{m}}$ | ${\mathit{\omega}}_{\mathit{m}}$ | ${\mathit{a}}_{\mathit{m}}$ | M |
---|---|---|---|---|

1 | −9.5158 × ${10}^{-3}$ | 1.0418 × ${10}^{-1}$ | 8.3676 × ${10}^{-2}$ | 3 |

2 | −1.3190 × ${10}^{-2}$ | 2.0196 × ${10}^{-1}$ | 4.3080 × ${10}^{-2}$ | 5 |

3 | −5.5556 × ${10}^{-3}$ | 4.2243 × ${10}^{-1}$ | 4.5354 × ${10}^{-2}$ | 7 |

4 | 8.5601 × ${10}^{-2}$ | 1.0403 × 10 | 1.1669 × 10 | 9 |

5 | 9.8704 × ${10}^{-2}$ | 8.6673 | 2.1948 × 10 | 11 |

6 | 8.7053 × ${10}^{-2}$ | 1.0250 × 10 | 9.6744 | 13 |

7 | −2.8024 × ${10}^{-2}$ | 3.0565 × ${10}^{-1}$ | 9.0310 × ${10}^{-3}$ | 15 |

8 | 4.7800 × ${10}^{-2}$ | 4.5260 | 6.1397 × ${10}^{-1}$ | 17 |

9 | −1.9750 × ${10}^{-2}$ | 5.2824 × ${10}^{-1}$ | 1.2018 × ${10}^{-2}$ | 19 |

10 | 8.5236 × ${10}^{-2}$ | 8.8956 | 6.9477 | 21 |

**Table 4.**Frequencies selected by HODMDc (in rad/s) presented in Figure 10.

m | ${\mathit{\delta}}_{\mathit{m}}$ | ${\mathit{\omega}}_{\mathit{m}}$ | ${\mathit{a}}_{\mathit{m}}$ | M |
---|---|---|---|---|

1 | −2.4974 × ${10}^{-3}$ | 1.0372 × ${10}^{-1}$ | 1.4785 × ${10}^{-1}$ | 3 |

2 | −5.6401 × ${10}^{-3}$ | 2.1195 × ${10}^{-1}$ | 9.5278 × ${10}^{-2}$ | 5 |

3 | −2.6524 × ${10}^{-2}$ | 3.3103 × ${10}^{-1}$ | 2.9438 × ${10}^{-2}$ | 7 |

4 | −2.9580 × ${10}^{-2}$ | 4.3577 × ${10}^{-1}$ | 2.2503 × ${10}^{-2}$ | 9 |

5 | −3.2188 × ${10}^{-2}$ | 5.4754 × ${10}^{-1}$ | 1.8342 × ${10}^{-2}$ | 11 |

6 | −2.8720 × ${10}^{-2}$ | 6.5329 × ${10}^{-1}$ | 1.7896 × ${10}^{-2}$ | 13 |

7 | −2.7517 × ${10}^{-2}$ | 7.8174 × ${10}^{-1}$ | 1.3842 × ${10}^{-2}$ | 15 |

8 | −2.8857 × ${10}^{-2}$ | 1.0277 | 1.2363 × ${10}^{-2}$ | 17 |

9 | −4.0700 × ${10}^{-2}$ | 1.1119 | 1.1227 × ${10}^{-2}$ | 19 |

10 | −4.2714 × ${10}^{-2}$ | 1.2517 | 8.6121 × ${10}^{-3}$ | 21 |

**Table 5.**Frequencies selected by HODMDc (in rad/s) presented in Figure 14.

m | ${\mathit{\delta}}_{\mathit{m}}$ | ${\mathit{\omega}}_{\mathit{m}}$ | ${\mathit{a}}_{\mathit{m}}$ | M |
---|---|---|---|---|

1 | −3.0199 × ${10}^{-2}$ | 1.3516 × ${10}^{-1}$ | 8.5508 × ${10}^{-2}$ | 3 |

2 | −4.0940 × ${10}^{-2}$ | 2.6042 × ${10}^{-1}$ | 4.9633 × ${10}^{-2}$ | 5 |

3 | −3.0227 × ${10}^{-2}$ | 4.2156 × ${10}^{-1}$ | 4.3403 × ${10}^{-2}$ | 7 |

4 | −4.0559 × ${10}^{-2}$ | 5.9441 × ${10}^{-1}$ | 3.7762 × ${10}^{-2}$ | 9 |

5 | −5.0647 × ${10}^{-2}$ | 8.5848 × ${10}^{-1}$ | 3.0700 × ${10}^{-2}$ | 11 |

6 | −9.1483 × ${10}^{-2}$ | 1.4785 | 2.2538 × ${10}^{-2}$ | 13 |

7 | −3.8967 × ${10}^{-2}$ | 1.1690 | 3.1258 × ${10}^{-2}$ | 15 |

8 | −1.0826 × ${10}^{-1}$ | 1.5864 | 1.8197 × ${10}^{-2}$ | 17 |

9 | −6.2864 × ${10}^{-2}$ | 1.3355 | 2.3832 × ${10}^{-2}$ | 19 |

10 | −7.8737 × ${10}^{-2}$ | 7.2259 × ${10}^{-1}$ | 2.0244 × ${10}^{-2}$ | 21 |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Le Clainche, S.; Ferrer, E.
A Reduced Order Model to Predict Transient Flows around Straight Bladed Vertical Axis Wind Turbines. *Energies* **2018**, *11*, 566.
https://doi.org/10.3390/en11030566

**AMA Style**

Le Clainche S, Ferrer E.
A Reduced Order Model to Predict Transient Flows around Straight Bladed Vertical Axis Wind Turbines. *Energies*. 2018; 11(3):566.
https://doi.org/10.3390/en11030566

**Chicago/Turabian Style**

Le Clainche, Soledad, and Esteban Ferrer.
2018. "A Reduced Order Model to Predict Transient Flows around Straight Bladed Vertical Axis Wind Turbines" *Energies* 11, no. 3: 566.
https://doi.org/10.3390/en11030566