Power Flow Distribution Strategy for Improved Power Electronics Energy Efficiency in Battery Storage Systems: Development and Implementation in a Utility-Scale System
Abstract
:1. Introduction
2. Second-Life Battery System
3. System Simulation
3.1. Model Development
3.2. Simulation Results
4. Optimized Power Flow Distribution Strategy
4.1. Proposal and Development
4.2. Field-Test Results
5. Conclusions
6. Outlook
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hesse, H.; Schimpe, M.; Kucevic, D.; Jossen, A. Lithium-Ion Battery Storage for the Grid—A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids. Energies 2017, 10, 2107. [Google Scholar] [CrossRef]
- Aneke, M.; Wang, M. Energy storage technologies and real life applications—A state of the art review. Appl. Energy 2016, 179, 350–377. [Google Scholar] [CrossRef]
- Munsell, M. In Shift to Longer-Duration Applications, US Energy Storage Installations Grow 100% in 2016. Greentech Media [Online], 7 March 2017. Available online: https://www.greentechmedia.com/articles/read/in-shift-to-longer-duration-applications-us-energy-storage-installations-gr (accessed on 2 November 2017).
- Cho, S.-M.; Yun, S.-Y. Optimal Power Assignment of Energy Storage Systems to Improve the Energy Storage Efficiency for Frequency Regulation. Energies 2017, 10, 2092. [Google Scholar] [CrossRef]
- Brand, M.J.; Hofmann, M.H.; Steinhardt, M.; Schuster, S.F.; Jossen, A. Current distribution within parallel-connected battery cells. J. Power Sources 2016, 334, 202–212. [Google Scholar] [CrossRef]
- Klein, M.P.; Park, J.W. Current Distribution Measurements in Parallel-Connected Lithium-Ion Cylindrical Cells under Non-Uniform Temperature Conditions. J. Electrochem. Soc. 2017, 164, A1893–A1906. [Google Scholar] [CrossRef]
- Schimpe, M.; Naumann, M.; Truong, N.; Hesse, H.C.; Santhanagopalan, S.; Saxon, A.; Jossen, A. Energy efficiency evaluation of a stationary lithium-ion battery container storage system via electro-thermal modeling and detailed component analysis. Appl. Energy 2018, 210, 211–229. [Google Scholar] [CrossRef]
- The Mobility House GmbH. World’s Largest 2nd-Use Battery Storage Is Starting Up. Available online: http://www.mobilityhouse.com/en/worlds-largest-2nd-use-battery-storage-is-starting-up/ (accessed on 2 November 2017).
- Choi, J.; Choi, I.; An, G.; Won, D.J. Advanced Power Sharing Method for Energy Efficiency Improvement of Multiple Battery Energy Storages System. IEEE Trans. Smart Grid 2016, 1, 1292–1300. [Google Scholar] [CrossRef]
- Lee, S.-J.; Choi, J.-Y.; Won, D.-J.; Choi, I.-S.; An, G.-H.; Choi, Y.-J. Frequency control of energy storage system based on hierarchical cluster structure. In Proceedings of the 2015 IEEE Eindhoven PowerTech, Eindhoven, The Netherlands, 29 June–2 July 2015; IEEE: Eindhoven, The Netherlands, 2015; pp. 1–5. [Google Scholar]
- Truong, C.N.; Naumann, M.; Karl, R.C.; Müller, M.; Jossen, A.; Hesse, H.C. Economics of Residential Photovoltaic Battery Systems in Germany: The Case of Teslas Powerwall. Batteries 2016, 2, 14. [Google Scholar] [CrossRef]
- Naumann, M.; Karl, R.C.; Truong, C.N.; Jossen, A.; Hesse, H.C. Lithium-ion Battery Cost Analysis in PV-household Application. Energy Procedia 2015, 73, 37–47. [Google Scholar] [CrossRef]
- Neubauer, J.; Pesaran, A. The ability of battery second use strategies to impact plug-in electric vehicle prices and serve utility energy storage applications. J. Power Sources 2011, 196, 10351–10358. [Google Scholar] [CrossRef]
- Neubauer, J.S.; Pesaran, A.; Williams, B.; Ferry, M.; Eyer, J. A Techno-Economic Analysis of PEV Battery Second Use: Repurposed-Battery Selling Price and Commercial and Industrial End-User Value. In Proceedings of the 2012 SAE World Congress & Exhibition, Detroit, MI, USA, 24–26 April 2012; SAE International400 Commonwealth Drive: Warrendale, PA, USA, 2012. [Google Scholar]
- Neubauer, J.S.; Wood, E.; Pesaran, A. A Second Life for Electric Vehicle Batteries: Answering Questions on Battery Degradation and Value. SAE Int. J. Mater. Manf. 2015, 8, 544–553. [Google Scholar] [CrossRef]
- Heymans, C.; Walker, S.B.; Young, S.B.; Fowler, M. Economic analysis of second use electric vehicle batteries for residential energy storage and load-levelling. Energy Policy 2014, 71, 22–30. [Google Scholar] [CrossRef]
- Gladwin, D.T.; Gould, C.R.; Stone, D.A.; Foster, M.P. Viability of “second-life” use of electric and hybridelectric vehicle battery packs. In Proceedings of the IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 10–13 November 2013; IEEE: Vienna, Austria, 2013; pp. 1922–1927. [Google Scholar]
- Viswanathan, V.V.; Kintner-Meyer, M. Second Use of Transportation Batteries: Maximizing the Value of Batteries for Transportation and Grid Services. IEEE Trans. Veh. Technol. 2011, 60, 2963–2970. [Google Scholar] [CrossRef]
- The Mobility House GmbH. Unpublished Company-Internal Measurement Data/Model Parameters. Not available for publishing. 2017. [Google Scholar]
- European Network of Transmission System Operators for Electricity (ENTSOE). Operation Handbook. Policy 1: Load-Frequency Control and Performance. 2009. Available online: https://www.entsoe.eu/publications/system-operations-reports/operation-handbook/Pages/default.aspx (accessed on 2 November 2017).
- German Transmission System Operators. REGELLEISTUNG.NET Internet Platform for the Allocation of Control Reserve. Available online: https://www.regelleistung.net/ext/?lang=en (accessed on 1 December 2017).
- German Transmission System Operators. Key Points and Degrees of Freedom for the Provision of Primary Control Reserve. Guidelines for Providers of Primary Control Reserve. (German Title: Eckpunkte und Freiheitsgrade bei Erbringung von Primärregelleistung. Leitfaden für Anbieter von Primärregelleistung). 2014. Available online: https://www.regelleistung.net/ext/download/eckpunktePRL (accessed on 1 December 2017).
- Gatta, F.; Geri, A.; Lamedica, R.; Lauria, S.; Maccioni, M.; Palone, F.; Rebolini, M.; Ruvio, A. Application of a LiFePO4 Battery Energy Storage System to Primary Frequency Control: Simulations and Experimental Results. Energies 2016, 9, 887. [Google Scholar] [CrossRef]
- Zeh, A.; Müller, M.; Naumann, M.; Hesse, H.; Jossen, A.; Witzmann, R. Fundamentals of Using Battery Energy Storage Systems to Provide Primary Control Reserves in Germany. Batteries 2016, 2, 29. [Google Scholar] [CrossRef]
- Thien, T.; Schweer, D.; Vom Stein, D.; Moser, A.; Sauer, D.U. Real-world operating strategy and sensitivity analysis of frequency containment reserve provision with battery energy storage systems in the german market. J. Energy Storage 2017, 13, 143–163. [Google Scholar] [CrossRef]
- Swissgrid Ltd. Grid-Transmission System-Grid Levels: Various Grid Levels Transport Electricity. Available online: https://www.swissgrid.ch/swissgrid/en/home/grid/transmission_system/grid_levels.html (accessed on 1 December 2017).
- Jossen, A. Fundamentals of battery dynamics. J. Power Sources 2006, 154, 530–538. [Google Scholar] [CrossRef]
- European Power Exchange. EPEX SPOT INTRADAY MARKETS REACH ALL-TIME HIGH IN 2016. Available online: https://www.epexspot.com/de/presse/press-archive/details/press/EPEX_SPOT_Intraday_markets_reach_all-time_high_in_2016 (accessed on 2 November 2017).
- Lambert, F. Tesla Slashes Price of the Powerpack System by Another 10% with New Generation. Available online: https://electrek.co/2016/11/14/tesla-powerpack-2-price/ (accessed on 2 November 2017).
Component Group | Component | Type | Parameter Overview (All: Data from [19]) |
---|---|---|---|
Technical Unit | Battery | Equivalent Circuit Model | |
Power Electronics | Loss-Curve Look-Up Data | ||
Grid Connection | Transformer | Loss-Curve Look-Up Data | |
Auxiliary Components | Battery Thermal Management System (B-TMS) | Measured Data over Time (No Model) | |
System Thermal Management System (S-TMS) | |||
Control & Monitoring incl. Uninterruptible Power Supply (C&M) | |||
Other | |||
System Control | Load Profile | Measured Data over Time (Model Input) | |
Initial/End State of Charge |
TU | Application | Charged Energy in MWh | Discharged Energy in MWh | Simulation Efficiency | Measured Efficiency | Simulation Deviation |
---|---|---|---|---|---|---|
TU 1 | Back-Up + ID | 7.75 | 5.04 | 64.79% | 64.95% | |
TU 2 | PCR + ID | 18.79 | 14.38 | 76.01% | 76.65% | |
TU 3 | PCR + ID | 19.01 | 13.88 | 71.11% | 73.14% | |
TU 4 | PCR + ID | 19.34 | 14.08 | 71.36% | 72.88% | |
TU 5 | PCR + ID | 19.38 | 14.19 | 71.52% | 73.34% | |
TU 6 | PCR + ID | 9.69 | 7.18 | 71.74% | 74.11% | |
All TU | various | 93.96 | 68.76 | 71.77% | 73.25% |
Power | Condition | Set-Point for | Set-Point for |
---|---|---|---|
Mode | Condition | Condition | Charge | Discharge | ||
---|---|---|---|---|---|---|
Mode 1 | ||||||
switching every 6 h of in-operation time to | ||||||
Mode 2 | ||||||
Mode 3 | ||||||
Mode 4 | ||||||
Mode 5 | ||||||
Mode 6 | Both power strings active, see Table 3 | |||||
Mode 7 | Both power strings active, see Table 3 | |||||
Mode 8 | ||||||
Mode 9 |
Parameter | TU 3 | TU 4 | TU 5 |
---|---|---|---|
Power Flow Distribution Strategy | Equal | Optimized | Equal |
Measured TU Energy Efficiency | 62.81% | 71.72% | 63.22% |
Measured PE In-Operation Time | 100.00% | 62.52% | 100.00% |
Mode | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
Temporal Share | 68.93% | 10.00% | 10.79% | 3.26% | 4.00% | 2.99% | 0.03% | 0.00% | 0.00% |
Parameter | TU 3 | TU 4 | TU 5 |
---|---|---|---|
Power Flow Distribution Strategy | Equal | Optimized | Equal |
Minimum SOC of TU | 40.09% | 39.56% | 39.73% |
Time-Average SOC of TU | 49.34% | 50.39% | 49.52% |
Maximum SOC of TU | 60.62% | 60.99% | 60.41% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schimpe, M.; Piesch, C.; Hesse, H.C.; Paß, J.; Ritter, S.; Jossen, A. Power Flow Distribution Strategy for Improved Power Electronics Energy Efficiency in Battery Storage Systems: Development and Implementation in a Utility-Scale System. Energies 2018, 11, 533. https://doi.org/10.3390/en11030533
Schimpe M, Piesch C, Hesse HC, Paß J, Ritter S, Jossen A. Power Flow Distribution Strategy for Improved Power Electronics Energy Efficiency in Battery Storage Systems: Development and Implementation in a Utility-Scale System. Energies. 2018; 11(3):533. https://doi.org/10.3390/en11030533
Chicago/Turabian StyleSchimpe, Michael, Christian Piesch, Holger C. Hesse, Julian Paß, Stefan Ritter, and Andreas Jossen. 2018. "Power Flow Distribution Strategy for Improved Power Electronics Energy Efficiency in Battery Storage Systems: Development and Implementation in a Utility-Scale System" Energies 11, no. 3: 533. https://doi.org/10.3390/en11030533
APA StyleSchimpe, M., Piesch, C., Hesse, H. C., Paß, J., Ritter, S., & Jossen, A. (2018). Power Flow Distribution Strategy for Improved Power Electronics Energy Efficiency in Battery Storage Systems: Development and Implementation in a Utility-Scale System. Energies, 11(3), 533. https://doi.org/10.3390/en11030533