Solid-State Anaerobic Digestion of Dairy Manure from a Sawdust-Bedded Pack Barn: Moisture Responses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feedstock
2.2. Experimental Design
2.3. Analytical Methods
2.4. Ultimate Biodegradability
2.5. Biogas Production Simulation
2.6. Statistical Analysis
3. Results and Discussion
3.1. Volatile Solids Removal
3.2. Methane Production
3.2.1. Maximum Methane Production Rate
3.2.2. Cumulative Methane Production
3.2.3. Effective Period to Produce Methane
4. Conclusions
Acknowledgements
Author Contributions
Conflicts of Interest
References
- Kim, E.J.; Lee, D.H.; Won, S.G.; Ahn, H.K. Evaluation of optimum moisture content for composting of beef manure and bedding material mixtures using oxygen uptake measurement. Asian Australas. J. Anim. Sci. 2016, 29, 753–758. [Google Scholar] [CrossRef] [PubMed]
- Ahn, H.K.; Kim, E.J.; Lee, J.H.; Kang, H.; Sung, Y.J. Influence of substrate to inoculum ratio on high solid anaerobic digestion of dairy manure. In Proceedings of the American Society of Agricultural Biological Engineering Annual International Meeting, Montreal, QC, Canada, 13–16 July 2014. [Google Scholar]
- Agnew, J.; Sampson, C.; Gaudet, M. Solid state anaerobic digestion in the Canadian Prairies. In Proceedings of the Canadian Society for Bioengineering Annual Conference, Saskatoon, SK, Canada, 7–10 July 2013. [Google Scholar]
- Khalid, A.; Arshad, M.; Anjum, M.; Mahmood, T.; Dawson, L. The anaerobic digestion of solid organic waste. Waste Manag. 2011, 31, 1737–1744. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jha, A.K.; He, J.; Ban, Q.; Chang, S.; Wang, P. Assessment of the effects of dry anaerobic co-digestion of cow dung with waste water sludge on biogas yield and biodegradability. Int. J. Phys. Sci. 2011, 6, 3723–3732. [Google Scholar]
- Veeken, A.; Hamelers, B. Effect of temperature on hydrolysis rates of selected biowaste components. Bioresour. Technol. 1999, 69, 249–254. [Google Scholar] [CrossRef]
- Martin, D.J.; Potts, L.G.A.; Heslop, V.A. Reaction mechanisms in solid-state anaerobic digestion: 1. The reaction front hypothesis. Process Saf. Environ. Protect. 2003, 81, 171–179. [Google Scholar] [CrossRef]
- Cao, Y.; Chang, Z.; Wang, J.; Ma, Y.; Fu, G. The fate of antagonistic microorganisms and antimicrobial substances during anaerobic digestion of pig and dairy manure. Bioresour. Technol. 2013, 136, 664–671. [Google Scholar] [CrossRef] [PubMed]
- Beneragama, N.; Lateef, S.A.; Iwasaki, M.; Yamashiro, T.; Umetsu, K. The combined effect of cefazolin and oxytertracycline on biogas production from thermophilic anaerobic digestion of dairy manure. Bioresour. Technol. 2013, 133, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Wall, D.M.; Allen, E.; Straccialini, B.; O’Kiely, P.; Murphy, J.D. Optimisation of digester performance with increasing organic loading rate for mono- and co-digestion of grass silage and dairy slurry. Bioresour. Technol. 2014, 173, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Passos, F.; Ortega, V.; Donoso-Bravo, A. Thermochemical pretreatment and anaerobic digestion of dairy cow manure: Experimental and economic evaluation. Bioresour. Technol. 2017, 227, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.J. Effect of moisture content and leachate recirculation frequency on biogas production performance during solid-state anaerobic digestion of dairy manure. Master’s Thesis, Chungnam National University, Daejeon, Korea, February 2015. [Google Scholar]
- Ahn, H.K.; Smith, M.C.; Kondrad, S.L.; White, J.W. Evaluation of biogas production potential by dry anaerobic digestion of switchgrass-animal manure mixtures. Appl. Biochem. Biotechnol. 2010, 160, 965–975. [Google Scholar] [CrossRef] [PubMed]
- Fernández, J.; Pérez, M.; Romero, L.I. Kinetics of mesophilic anaerobic digestion of the organic fraction of municipal solid waste: Influence of initial total solid concentration. Bioresour. Technol. 2010, 101, 6322–6328. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Park, S.Y.; Zhu, J. Solid-state anaerobic digestion for methane production from organic waste. Renew. Sustain. Energy Rev. 2011, 15, 821–826. [Google Scholar] [CrossRef]
- Jha, A.K.; Li, J.; Nies, L.; Zhang, L. Research advances in dry anaerobic digestion process of solid organic wastes. Afr. J. Biotechnol. 2011, 10, 14242–14253. [Google Scholar]
- Karthikeyan, O.P.; Visvanathan, C. Bio-energy recovery from high-solid organic substrates by dry anaerobic bio-conversion processes: A review. Rev. Environ. Sci. Bio-Technol. 2013, 12, 257–284. [Google Scholar] [CrossRef]
- Forster-Carneiro, T.; Pérez, M.; Romero, L.I. Influence of total solid and inoculum contents on performance of anaerobic reactors treating food waste. Bioresour. Technol. 2008, 99, 6994–7002. [Google Scholar] [CrossRef] [PubMed]
- U.S. Composting Council (USCC). TMECC 4.11-A: Test Methods for the Examination of Composting and Compost, USCC: New York, NY, USA, 2001.
- Mabuhay, A.J.; Nakagoshi, N.; Horikoshi, T. Microbial biomass and abundance after forest fire in pine forests in Japan. Ecol. Res. 2003, 18, 431–441. [Google Scholar] [CrossRef]
- Ahn, H.K.; Richard, T.L.; Glanville, T.D. Optimum moisture levels for biodegradation of mortality composting envelope materials. Waste Manag. 2008, 28, 1411–1416. [Google Scholar] [CrossRef] [PubMed]
- Ahn, H.K.; Sauer, T.J.; Richard, T.L.; Glanville, T.D. Determination of thermal properties of composting bulking materials. Bioresour. Technol. 2009, 100, 3974–3981. [Google Scholar] [CrossRef] [PubMed]
- Korazbekova, K.U.; Bakhov, Z.K. Performance of leach-bed reactor with immobilization of microorganisms in terms of methane production kinetics. J. Biol. Sci. 2014, 14, 258–266. [Google Scholar] [CrossRef]
- Tritt, W.P.; Kang, H. Ultimate biodegradability and decay rates of cow paunch manure under anaerobic conditions. Bioresour. Technol. 1991, 36, 161–165. [Google Scholar] [CrossRef]
- Kang, H.; Weiland, P. Ultimate anaerobic biodegradability of some agro-industrial residues. Bioresour. Technol. 1993, 43, 107–111. [Google Scholar] [CrossRef]
- Koppar, A.; Pullammanappallil, P. Single-stage, batch, leach-bed, thermophilic anaerobic digestion of spent sugar beet pulp. Bioresour. Technol. 2008, 99, 2831–2839. [Google Scholar] [CrossRef] [PubMed]
- Amon, T.; Amon, B.; Kryvoruchko, V.; Zollitsch, W.; Mayer, K.; Gruber, L. Biogas production from maize and dairy cattle manure-Influence of biomass composition on the methane yield. Agric. Ecosyst. Environ. 2007, 118, 173–182. [Google Scholar] [CrossRef]
- Kang, H.; Jeong, K.H.; Jeong, J.H.; Kim, S.W.; Ahn, H.K. Anaerobic ultimate biodegradability and multiple decay rates of dairy cow manure. J. Korea Soc. Waste Manag. 2014, 31, 833–842. [Google Scholar] [CrossRef]
- Fernández, J.; Pérez, M.; Romero, L.I. Effect of substrate concentration on dry mesophilic anaerobic digestion of organic fraction of municipal solid waste (OFMSW). Bioresour. Technol. 2008, 99, 6075–6080. [Google Scholar] [CrossRef] [PubMed]
- El-Mashad, H.M.; Zhang, R. Biogas production from co-digestion of dairy manure and food waste. Bioresour. Technol. 2006, 101, 4021–4028. [Google Scholar] [CrossRef] [PubMed]
- Palmowski, L.M.; Müller, J.A. Influence of the size reduction of organic waste on their anaerobic digestion. Water Sci. Technol. 2000, 41, 155–162. [Google Scholar] [PubMed]
- Xie, S. Evaluation of Biogas Production from Anaerobic Digestion of Pig Manure and Grass Silage. Ph.D. Thesis, National University of Ireland, Galway, Ireland, October 2012. [Google Scholar]
Parameters | Bedded Pack Dairy Manure (as Collected) |
---|---|
Moisture Content (%, w.b.) a | 69.4 ± 0.1 |
Volatile solids (%, d.b.) b | 84.2 ± 0.1 |
Water holding capacity (%, w.b.) | 83.1 ± 2.3 |
Bulk density (kg/m3) | 648.4 ± 3.9 |
Free air space (%) | 43.3 ± 0.7 |
Total Carbon (%, d.b.) | 39.2 ± 3.5 |
Total Nitrogen (%, d.b.) | 1.5 ± 0.2 |
Cellulose (%, d.b.) | 24.0 ± 1.2 |
Hemicellulose (%, d.b.) | 5.6 ± 2.3 |
Lignin (%, d.b.) | 29.1 ± 1.8 |
Parameters | MC70 | MC76 | MC83 |
---|---|---|---|
Ultimate biodegradability (UB) (%) | 23 ± 0.0 | 21 ± 0.0 | 24 ± 0.0 |
Total volatile solids (VS) removal (%) | 15.5 ± 0.3 | 18.9 ± 1.0 | 21.2 ± 0.4 |
Biodegradable volatile solids removal (%) a | 54.7 ± 1.1 | 66.9 ± 3.7 | 74.6 ± 1.3 |
Parameters | MC70 | MC76 | MC83 |
---|---|---|---|
Maximum specific methane yield (NmL g VS−1 day−1) | 1.6 ± 0.2 a | 3.7 ± 0.3 b | 3.6 ± 0.0 b |
Kinetic parameters | - | - | - |
to (days) | 32.7 ± 0.6 a | 18.6 ± 0.0 b | 19.6 ± 0.5 b |
a (NmL g VS−1 day−1) | 1.6 ± 0.2 a | 3.7 ± 0.3 b | 3.7 ± 0.0 b |
b (days) | 15.2 ± 0.8 a | 7.2 ± 0.0 b | 9.1 ± 0.3 c |
Parameters | MC70 | MC76 | MC83 |
---|---|---|---|
Cumulative methane production (NmL g VS−1) | 64 ± 1 a | 73 ± 6 a,b | 90 ± 3 b |
P (NmL g VS−1) | 63 ± 1 a | 72 ± 5 a,b | 90 ± 3 b |
Rm (NmL g VS−1 day−1) | 2 ± 0.0 a | 4 ± 0.0 b | 4 ± 0.0 b |
λ (days) | 13.9 ± 0.1 a | 8.9 ± 0.1 b | 7.6 ± 0.2 c |
T95 (days) | 66.7 ± 0.4 a | 38.2 ± 1.6 b | 43.2 ± 1.5 b |
Effective period to produce methane (days) | 52.8 ± 0.5 a | 29.3 ± 1.7 b | 35.6 ± 1.4 b |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, E.; Lee, S.; Jo, H.; Jeong, J.; Mulbry, W.; Rhaman, S.; Ahn, H. Solid-State Anaerobic Digestion of Dairy Manure from a Sawdust-Bedded Pack Barn: Moisture Responses. Energies 2018, 11, 484. https://doi.org/10.3390/en11030484
Kim E, Lee S, Jo H, Jeong J, Mulbry W, Rhaman S, Ahn H. Solid-State Anaerobic Digestion of Dairy Manure from a Sawdust-Bedded Pack Barn: Moisture Responses. Energies. 2018; 11(3):484. https://doi.org/10.3390/en11030484
Chicago/Turabian StyleKim, Eunjong, Seunghun Lee, Hyeonsoo Jo, Jihyeon Jeong, Walter Mulbry, Shafiqur Rhaman, and Heekwon Ahn. 2018. "Solid-State Anaerobic Digestion of Dairy Manure from a Sawdust-Bedded Pack Barn: Moisture Responses" Energies 11, no. 3: 484. https://doi.org/10.3390/en11030484
APA StyleKim, E., Lee, S., Jo, H., Jeong, J., Mulbry, W., Rhaman, S., & Ahn, H. (2018). Solid-State Anaerobic Digestion of Dairy Manure from a Sawdust-Bedded Pack Barn: Moisture Responses. Energies, 11(3), 484. https://doi.org/10.3390/en11030484