# Assessment of Resource and Forecast Modeling of Wind Speed through An Evolutionary Programming Approach for the North of Tehuantepec Isthmus (Cuauhtemotzin, Mexico)

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Study Location and Measured Data

#### 2.1. Specific Site Location

#### 2.2. Experimental System and Instrumentation

## 3. Wind Assessment

#### 3.1. Hellman Power Law

#### 3.2. Wind Distribution Function

#### 3.3. Assessment Results

#### 3.3.1. Wind Profile

#### 3.3.2. Data Analysis

^{−3}°C

^{−1}for the warm humid tropical climate conditions of the region. Additionally, presences of $RH$ in the air reduces significantly ${\rho}_{air}$. The statistical results indicate that, for Cuauhtemotzin zone, $RH$ presents a variation of 20% per year with a Std. Dev. $\pm 8.8614$, being the element with the greatest impact on annual ${\rho}_{air}$ fluctuations. Based on the previous description, annual reports of ${\rho}_{air}$ are lower than the standard value assumed in the literature for the evaluation of the wind potential ($\rho $ = 1.225 kg/m${}^{3}$). Therefore, the use of the standardized $\rho $ for the location of Cuauhtemotzin underestimates the wind potential for up to 6.3%.

## 4. Artificial Intelligence Forecasting Modeling

#### 4.1. Multi-Gene Genetic Programming Approach

#### 4.2. Computational Methodology

#### 4.3. Sensitivity Analysis

#### 4.4. Forecast Model Results

#### 4.4.1. Multi-Gene Genetic Programming Model

#### 4.4.2. Sensitivity Analysis Evaluation

#### 4.4.3. MGGP Forecast Model Validation

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- REN21. Renewables 2017: Global Status Report; Technical Report; Renewable Energy Policy Network for the 21st Century: Paris, France, 2017. [Google Scholar]
- IEA. Renewables Information: Overview; Technical Report; International Energy Agency: Paris, France, 2018. [Google Scholar]
- Pérez-Denicia, E.; Fernández-Luqueño, F.; Vilariño-Ayala, D.; Manuel Montaño-Zetina, L.; Alfonso Maldonado-López, L. Renewable energy sources for electricity generation in Mexico: A review. Renew. Sustain. Energy Rev.
**2017**, 78, 597–613. [Google Scholar] [CrossRef] - Hernández-Escobedo, Q.; Perea-Moreno, A.J.; Manzano-Agugliaro, F. Wind energy research in Mexico. Renew. Energy
**2018**, 123, 719–729. [Google Scholar] [CrossRef] - Guerrero, A.L. CEMIE-EOLICO, Alianza Para la Ciencia y Tecnología del Viento; Technical Report; CEMIE Eólico, Instituto Nacional de Electricidad y Energías Limpias: Cuernava, Mexico, 2016.
- Alemán-Nava, G.S.; Casiano-Flores, V.H.; Cárdenas-Chávez, D.L.; Díaz-Chavez, R.; Scarlat, N.; Mahlknecht, J.; Dallemand, J.F.; Parra, R. Renewable energy research progress in Mexico: A review. Renew. Sustain. Energy Rev.
**2014**, 32, 140–153. [Google Scholar] [CrossRef] - Hau, E. Wind Turbines; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Zhou, J.; Erdem, E.; Li, G.; Shi, J. Comprehensive evaluation of wind speed distribution models: A case study for North Dakota sites. Energy Convers. Manag.
**2010**. [Google Scholar] [CrossRef] - Gräbner, J.; Jahn, J. Optimization of the distribution of wind speeds using convexly combined Weibull densities. Renew. Wind. Water Sol.
**2017**, 4, 7. [Google Scholar] [CrossRef] - Jaramillo, O.A.; Borja, M.A. Wind speed analysis in La Ventosa, Mexico: A bimodal probability distribution case. Renew. Energy
**2004**. [Google Scholar] [CrossRef] - Erdem, E.; Shi, J. ARMA based approaches for forecasting the tuple of wind speed and direction. Appl. Energy
**2011**. [Google Scholar] [CrossRef] - Wang, J.; Song, Y.; Liu, F.; Hou, R. Analysis and application of forecasting models in wind power integration: A review of multi-step-ahead wind speed forecasting models. Renew. Sustain. Energy Rev.
**2016**, 60, 960–981. [Google Scholar] [CrossRef] - Okumus, I.; Dinler, A. Current status of wind energy forecasting and a hybrid method for hourly predictions. Energy Convers. Manag.
**2016**, 123, 362–371. [Google Scholar] [CrossRef] - Nowotarski, J.; Weron, R. Recent advances in electricity price forecasting: A review of probabilistic forecasting. Renew. Sustain. Energy Rev.
**2018**, 81, 1548–1568. [Google Scholar] [CrossRef] - Archer, C.L.; Vasel-Be-Hagh, A.; Yan, C.; Wu, S.; Pan, Y.; Brodie, J.F.; Maguire, A.E. Review and evaluation of wake loss models for wind energy applications. Appl. Energy
**2018**, 226, 1187–1207. [Google Scholar] [CrossRef] - Zhang, Y.; Wang, J. A distributed approach for wind power probabilistic forecasting considering spatiooral correlation without direct access to off-site information. IEEE Trans. Power Syst.
**2018**. [Google Scholar] [CrossRef] - Nielsen, H.A.; Madsen, H.; Nielsen, T.S. Using quanti le regression to extend an existing wind power forecasting system With probabilistic forecasts. Wind Energy
**2006**. [Google Scholar] [CrossRef] - Pinson, P.; Kariniotakis, G. Conditional Prediction Intervals of Wind Power Generation. IEEE Trans. Power Syst.
**2010**. [Google Scholar] [CrossRef] [Green Version] - Liu, H.; Shi, J.; Erdem, E. An integrated wind power forecasting methodology: Interval estimation of wind speed, operation probability of wind turbine, and conditional expected wind power output of a wind farm. Int. J. Green Energy
**2013**. [Google Scholar] [CrossRef] - Zhang, Y.; Wang, J. K-nearest neighbors and a kernel density estimator for GEFCom2014 probabilistic wind power forecasting. Int. J. Forecast.
**2016**. [Google Scholar] [CrossRef] - Palit, A.K.; Popovic, D. Computational Intelligence in Time Series Forecasting; Springer: Berlin, Germany, 2005. [Google Scholar]
- Cruz May, E.; Ricalde, L.J.; Atoche, E.J.R.; Bassam, A.; Sanchez, E.N. Forecast and Energy Management of a Microgrid with Renewable Energy Sources Using Artificial Intelligence. In Intelligent Computing Systems. ISICS 2018. Communications in Computer and Information Science; Brito-Loeza, C., Espinosa-Romero, A., Eds.; Springer International Publishing: Berlin, Germany, 2018; pp. 81–96. [Google Scholar]
- Zendehboudi, A.; Baseer, M.; Saidur, R. Application of support vector machine models for forecasting solar and wind energy resources: A review. J. Clean. Prod.
**2018**, 199, 272–285. [Google Scholar] [CrossRef] - Zhang, F.; Dong, Y.; Zhang, K. A Novel Combined Model Based on an Artificial Intelligence Algorithm—A Case Study on Wind Speed Forecasting in Penglai , China. Sustainability
**2016**, 8, 555. [Google Scholar] [CrossRef] - Li, G.; Shi, J.; Zhou, J. Bayesian adaptive combination of short-term wind speed forecasts from neural network models. Renew. Energy
**2011**. [Google Scholar] [CrossRef] - Hocaoglu, F.O.; Gerek, Ö.N.; Kurban, M. A novel wind speed modeling approach using atmospheric pressure observations and hidden Markov models. J. Wind Eng. Ind. Aerodyn.
**2010**. [Google Scholar] [CrossRef] - Cortés Pérez, E.; Nuñez Rodríguez, A.; Moreno De La Torre, R.E.; Lastres Danguillecourt, O.; Dorrego Portela, J.R. Forecasting of Wind Spedd with a Backpropagation Artificial Neural Network in the Isthmus of Tehuantepec Region in the State of Oaxaca, Mexico. Acta Univ.
**2012**, 22, 62–68. [Google Scholar] - Cadenas, E.; Rivera, W.; Campos-Amezcua, R.; Cadenas, R. Wind speed forecasting using the NARX model, case: La Mata, Oaxaca, México. Neural Comput. Appl.
**2016**, 27, 2417–2428. [Google Scholar] [CrossRef] - ABS. Guide for Building and Classing Floating Offshore Wind Turbine Installations; Technical Report; American Bureau of Shipping: Houston, TX, USA, 2015. [Google Scholar]
- Van der Tempel, J.; Diepeveen, N.F.B.; Cerda Salzmann, D.J.; de Vries, W.E. Design of Support Structures for Offshore Wind Turbines. In Wind Power Generation and Wind Turbine Design; WIT Press: Southampton, UK, 2006. [Google Scholar]
- Liu, Y.; Chen, D.; Yi, Q.; Li, S. Wind profiles and wave spectra for potential wind farms in South China Sea. Part I: Wind speed profile model. Energies
**2017**, 10, 125. [Google Scholar] [CrossRef] - Dong, Y.; Wang, J.; Jiang, H.; Shi, X. Intelligent optimized wind resource assessment and wind turbines selection in Huitengxile of Inner Mongolia, China. Appl. Energy
**2013**. [Google Scholar] [CrossRef] - Jaramillo, O.; Borja, M. Bimodal versus Weibull Wind Speed Distributions: An Analysis of Wind Energy Potential in La Venta, Mexico. Wind Eng.
**2004**. [Google Scholar] [CrossRef] - Li, M.; Li, X. MEP-type distribution function: A better alternative to Weibull function for wind speed distributions. Renew. Energy
**2005**. [Google Scholar] [CrossRef] - Kantar, Y.M.; Usta, I. Analysis of wind speed distributions: Wind distribution function derived from minimum cross entropy principles as better alternative to Weibull function. Energy Convers. Manag.
**2008**. [Google Scholar] [CrossRef] - Albani, A.; Ibrahim, M.Z. Wind Energy Potential and Power Law Indexes Assessment for Selected Near-Coastal Sites in Malaysia. Energies
**2017**, 10, 307. [Google Scholar] [CrossRef] - Chowdhury, S.; Mehmani, A.; Zhang, J.; Messac, A. Market suitability and performance tradeoffs offered by commercialwind turbines across differingwind regimes. Energies
**2016**, 9, 352. [Google Scholar] [CrossRef] - Zhang, Y.; Wang, J.; Wang, X. Review on probabilistic forecasting of wind power generation. Renew. Sustain. Energy Rev.
**2014**, 32, 255–270. [Google Scholar] [CrossRef] - Handbook of Genetic Programming Aplications; Number 2015945115; Springer International Publishing Switzerland: Cham, Switzerland, 2015.
- Do Nascimento Camelo, H.; Lucio, P.; Junior, J.; de Carvalho, P. A hybrid model based on time series models and neural network for forecasting wind speed in the Brazilian northeast region. Sustain. Energy Technol. Assess.
**2018**, 28, 65–72. [Google Scholar] [CrossRef] - May Tzuc, O.; Bassam, A.; Mendez-Monroy, P.E.; Sanchez Dominguez, I. Estimation of the operating temperature of photovoltaic modules using artificial intelligence techniques and global sensitivity analysis: A comparative approach. J. Renew. Sustain. Energy
**2018**, 10, 033503. [Google Scholar] [CrossRef] [Green Version] - Morris, M. Factorial sampling plans for preliminary computational experiments. Technometrics
**1991**, 9, 161–164. [Google Scholar] [CrossRef] - Lee, L.; Srivastava, P.K.; Petropoulos, G.P. Overview of Sensitivity Analysis Methods in Earth Observation Modeling; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 3–24. [Google Scholar]
- Sarrazin, F.; Pianosi, F.; Wagener, T. Global Sensitivity Analysis of environmental models: Convergence and validation. Environ. Model. Softw.
**2016**, 79, 135–152. [Google Scholar] [CrossRef] - Handbook of Genetic Programming Applications; Chapter GPTIPS 2: An Open-Source Software Platform for Symbolic Data Mining; Springer Publishing International: Berlin, Germany, 2015.
- Pianosi, F.; Sarrazin, F.; Wagener, T. A Matlab toolbox for Global Sensitivity Analysis. Environ. Model. Softw.
**2015**, 70, 80–85. [Google Scholar] [CrossRef]

**Figure 1.**Wind power density at 80 m.a.g.l. for the territory of Mexico [6].

**Figure 2.**Location map: (

**a**) the location for Tabasco State; (

**b**) zoom of masts in Cuauhtemotzin (I and II) in municipality of Cardenas; and (

**c**) location and isotach of Cuauhtemotzin site inside orography trajectory to La Venta, Oaxaca showing proximity in latitude and longitude.

**Figure 3.**Sample of wind speeds recorded in Cuauhtemotzin zone for the study heights (26, 33, and 54 m).

**Figure 5.**Bimodal distribution for the wind speeds obtained in the measurement campaign: (

**a**) 26 m (Cuauhtemotzin II); (

**b**) 33 m (Cuauhtemotzin I); and (

**c**) 54 m (Cuauhtemotzin I).

**Figure 6.**Wind direction from the annual measuring campaign in 2016: (

**a**) wind measurements from Cuauhtemotzin I; and (

**b**) wind measurements from Cuauhtemotzin II.

**Figure 8.**Autocorrelation function of the forecast errors for the MGGP with significant limits of 95%.

**Figure 9.**Sensitivity analysis results for the forecasting multi-gene genetic programming developed model.

**Figure 10.**Comparison between experimental WS and simulated values for the first semester of the year (

**a**) January; (

**b**) February; (

**c**) March; (

**d**) April; (

**e**) May; and (

**f**) June.

**Figure 11.**Comparison between experimental WS and simulated values for the second semester of the year: (

**a**) July; (

**b**) August; (

**c**) September; (

**d**) October; (

**e**) November; and (

**f**) December.

Landscape | $\mathit{\alpha}$ |
---|---|

Flat land with ice or grass | 0.08–0.12 |

Sea and coasts | 0.14 |

Little hilly areas | 0.13–0.16 |

Rural zones | 0.20 |

Rugged terrains and forests | 0.20–0.26 |

Very rugged terrains and cities | 0.25–0.40 |

**Table 2.**Comparison and evaluation of the wind profile for Cuauhtemotzin considering implementation cases at different heights.

Parameters | Measured | $\mathit{\alpha}=0.140$ | $\mathit{\alpha}=0.143$ | $\mathit{\alpha}=0.200$ | $\mathit{\alpha}=0.260$ | $\mathit{\alpha}=0.400$ | $\mathit{\alpha}=0.598$ |
---|---|---|---|---|---|---|---|

WS [m/s] | 4.12 | 2.8458 | 2.8520 | 2.9734 | 3.1067 | 3.4414 | 3.9796 |

Error [-] | - | 0.3093 | 0.3078 | 0.2783 | 0.2460 | 0.1647 | 0.0341 |

WTM | h [m] | ${\mathit{WS}}_{\mathit{c}}$ [m/s] | ${\mathit{WS}}_{\mathit{r}}$ [m/s] | ${\mathit{WS}}_{\mathit{\alpha}=\mathbf{0.598}}$ [m/s] | |||

Gamesa G58-850 | 54 | 3.0 | 12.0 | 3.9796 | |||

Unison U54-750 | 60 | 3.0 | 12.0 | 4.2387 | |||

Dewind D4/48-600 | 70 | 3.0 | 12.0 | 4.6486 |

**Table 3.**Statistical parameters results of climatic annual variations for for Cuauhtemotzin, Mexico.

Variable | Units | min. | max. | mean | Std Dev | WS Cross Corr % | |
---|---|---|---|---|---|---|---|

Air temperature | (${T}_{a}$) | [${}^{\circ}$C] | 12.896 | 39.420 | 26.158 | 2.9626 | 11.13% |

Atmospheric Pressure | (${P}_{atm}$) | [mbar] | 998.45 | 1027.55 | 1011.35 | 4.05087 | 21.91% |

Relative Humidity | ($RH$) | [%] | 37.8 | 100 | 86.3940 | 8.8614 | 30.53% |

Wind Direction | ($WD$) | [${}^{\circ}$Deg] | 0 | 355.2 | 125.0309 | 112.5971 | 5.6566% |

Air Density | (${\rho}_{air}$) | [kgm${}^{-3}$] | 1.12274 | 1.24206 | 1.17845 | 0.01488 | 1.6011% |

Solar Radiation | ($SR$) | [Wm${}^{-2}$] | 0.6 | 1276.90 | 198.3771 | 295.9758 | 18.9817% |

Rain | ($Rn$) | [mm] | 0 | 22.61 | 0.044 | 0.46154 | 8.641% |

**Table 4.**PDF models fit comparison for the estimation of wind resource probability in Cuauhtemotzin.

Weibull PDF | ||||||||||

h [m] | c | k | R^{2} | KS | WS [m/s] | WPD [W/m${}^{\mathbf{2}}$] | ||||

26 | 6.1606 | 1.1935 | 0.4107 | 0.9564 | 2.83 | 53.26 | ||||

33 | 6.9670 | 1.2075 | 0.3426 | 0.9521 | 3.43 | 94.83 | ||||

54 | 7.5346 | 1.3035 | 0.2247 | 0.9242 | 4.12 | 144.17 | ||||

Bimodal PDF | ||||||||||

h [m] | A${}_{\mathbf{1}}$ | A${}_{\mathbf{2}}$ | ${\mathit{\sigma}}_{\mathbf{1}}$ | ${\mathit{\sigma}}_{\mathbf{2}}$ | ${\mathit{\mu}}_{\mathbf{1}}$ | ${\mathit{\mu}}_{\mathbf{2}}$ | R${}^{\mathbf{2}}$ | KS | WS [m/s] | WPD [W/m${}^{\mathbf{2}}$] |

26 | 0.0167 | 0.5176 | 0.9201 | 1.6791 | 7.3874 | 2.5156 | 0.9443 | 0.0115 | 2.83 | 51.64 |

33 | 0.0365 | 0.4949 | 1.8319 | 1.8302 | 9.5346 | 2.8232 | 0.9918 | 0.0117 | 3.43 | 114.71 |

54 | 0.4829 | 0.4661 | 2.5970 | 1.8458 | 10.1692 | 3.4685 | 0.9963 | 0.0045 | 4.12 | 181.73 |

Directions [${}^{\circ}$] | Average Wind Velocity [ms${}^{-1}$] | Maximum Wind Velocity [ms${}^{-1}$] | Frequency [Times] | Mean Differences [ms${}^{-1}$] |
---|---|---|---|---|

N | 3.3588 | 11.84 | 6588 | 0.78989 |

NNE | 3.1223 | 11.08 | 7470 | 0.5533 |

NE | 2.9911 | 10.07 | 8462 | 0.42205 |

ENE | 2.8269 | 8.56 | 8091 | 0.25788 |

E | 1.9709 | 8.81 | 3272 | −0.5981 |

ESE | 1.4297 | 8.81 | 1830 | −1.1393 |

SE | 1.1499 | 8.81 | 1884 | −1.4191 |

SSE | 1.2714 | 8.31 | 1894 | −1.2976 |

S | 1.3896 | 14.35 | 1916 | −1.1794 |

SSW | 1.6059 | 11.84 | 1678 | −1.9631 |

SW | 1.3656 | 11.58 | 1353 | −1.2034 |

WSW | 1.0818 | 7.05 | 1023 | −1.4872 |

W | 1.0568 | 6.8 | 1116 | −1.4074 |

WNW | 1.1616 | 6.3 | 1000 | −1.4074 |

NW | 2.0518 | 10.07 | 1140 | −0.5172 |

NNW | 3.9586 | 11.33 | 3518 | 1.3895 |

Parameter | Minimum | Maximum | Units |
---|---|---|---|

Input variables: | |||

Temperature (${T}_{air}$) | 12.896 | 39.420 | [${}^{\circ}$C] |

Relative Humidity ($RH$) | 37.8 | 100 | [%] |

Atmospheric Pressure (${P}_{atm}$) | 998.45 | 1027.55 | [mbar] |

Global Solar Radiation (G) | 0.6 | 1276.90 | [Wm${}^{-2}$] |

1st Past WS ($W{S}_{-1}$) | 0 | 14.35 | [ms${}^{-1}$] |

2nd Past WS ($W{S}_{-2}$) | 0 | 14.35 | [ms${}^{-1}$] |

3rd Past WS ($W{S}_{-3}$) | 0 | 14.35 | [ms${}^{-1}$] |

4th Past WS ($W{S}_{-4}$) | 0 | 14.35 | [ms${}^{-1}$] |

Output variables: | |||

Wind Speed ($WS$) | 0 | 14.35 | [ms${}^{-1}$] |

Parameter | Value |
---|---|

Tournament Size | 10 |

Function Set | $+,\text{}-,\text{}x,\text{}/,\text{}\sqrt{},\text{}sin,\text{}cos,\text{}tan,\text{}sinh,\text{}cosh,\text{}tanh,\text{}ln,\text{}exp,\text{}lo{g}_{10}$ |

Population Size | 100 |

Mutation Probabilities | $0.4$ |

Maximum Tree Depth | 13 |

Maximum Total Nodes | ∞ |

Maximum Genes | 30 |

Maximum Generations | 30 |

Input Variables | 8 |

Elite Fractions | $0.05$ |

ERC Probability | $0.1$ |

Crossover Probability | $0.55$ |

Statistic Parameter | ARIMA | MGGP | |
---|---|---|---|

Train | Test | ||

RMSE | 0.5922 | 0.51799 | 0.52877 |

MAE | 0.4348 | 0.38342 | 0.38831 |

MPE | −8.4893 | −8.5578 | −13.5836 |

R | 0.9498 | 0.95855 | 0.95668 |

Input Variables | Units | ${\mathit{\sigma}}_{\mathit{i}}$ |
---|---|---|

Environmental Temperature | ${T}_{a}$ | $0.014$ |

Relative Humidity | $RH$ | $0.002$ |

Atmospheric Pressure | ${P}_{atm}$ | $0.001$ |

Global Solar Radiation | G | $0.946$ |

1st Past WS | $W{S}_{-1}$ | $1.453$ |

2nd Past WS | $W{S}_{-2}$ | $1.230$ |

3rd Past WS | $W{S}_{-3}$ | $0.782$ |

4th Past WS | $W{S}_{-4}$ | $0.001$ |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

López-Manrique, L.M.; Macias-Melo, E.V.; May Tzuc, O.; Bassam, A.; Aguilar-Castro, K.M.; Hernández-Pérez, I.
Assessment of Resource and Forecast Modeling of Wind Speed through An Evolutionary Programming Approach for the North of Tehuantepec Isthmus (Cuauhtemotzin, Mexico). *Energies* **2018**, *11*, 3197.
https://doi.org/10.3390/en11113197

**AMA Style**

López-Manrique LM, Macias-Melo EV, May Tzuc O, Bassam A, Aguilar-Castro KM, Hernández-Pérez I.
Assessment of Resource and Forecast Modeling of Wind Speed through An Evolutionary Programming Approach for the North of Tehuantepec Isthmus (Cuauhtemotzin, Mexico). *Energies*. 2018; 11(11):3197.
https://doi.org/10.3390/en11113197

**Chicago/Turabian Style**

López-Manrique, Luis M., E. V. Macias-Melo, O. May Tzuc, A. Bassam, K. M. Aguilar-Castro, and I. Hernández-Pérez.
2018. "Assessment of Resource and Forecast Modeling of Wind Speed through An Evolutionary Programming Approach for the North of Tehuantepec Isthmus (Cuauhtemotzin, Mexico)" *Energies* 11, no. 11: 3197.
https://doi.org/10.3390/en11113197