Large Eddy Simulation of Turbulent Attached Cavitating Flows around Different Twisted Hydrofoils
Abstract
:1. Introduction
2. Numerical Methods and Validation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
C | Chord length of hydrofoil, mm |
Cw | WALE constant |
CL | Lift coefficient |
CD | Drag coefficient |
f | Typical shedding frequency of cavity dynamic development |
Fc | Empirical condensation coefficient |
Fe | Empirical vaporization coefficient |
FL | Lift force |
FD | Drag force |
k | von Karman’s constant |
Ls | Mixing length for the sub-grid stresses |
LES | Large eddy simulation |
DES | Detached eddy simulation |
CFD | Computational fluid dynamics |
m+ | Condensation rates |
m− | Evaporation rates |
pv | Saturated vapor pressure |
pout | Outlet pressure |
RB | Radius of the nucleation sites |
S | Span length of hydrofoil |
C | The chord length of hydrofoil |
Strain rate tensor | |
U∞ | Inlet velocity |
V | Volume of the computational cell |
Greek Letters | |
ρm | Mixture density |
ρl | Water density |
ρv | Water vapor density |
αl | Water volume fraction |
αv | Water vapor |
αnuc | Volume fraction of the nucleation sites |
σ | Cavitation number |
μm | Mixture dynamic viscosity |
μt | Subgrid-scale turbulent viscosity |
τij | Subgrid-scale stresses |
References
- Sedlar, M.; Ji, B.; Kratky, T.; Rebok, T.; Huzlik, R. Numerical and experimental investigation of three-dimensional cavitating flow around the straight NACA2412 hydrofoil. Ocean Eng. 2016, 123, 357–382. [Google Scholar] [CrossRef]
- Ji, B.; Wang, J.; Luo, X.; Miyagawa, K.; Xiao, L.Z.; Long, X.; Tsujimoto, Y. Numerical simulation of cavitation surge and vortical flows in a diffuser with swirling flow. J. Mech. Sci. Technol. 2016, 30, 2507–2514. [Google Scholar] [CrossRef]
- Zuo, Z.G.; Liu, S.H.; Liu, D.M.; Qin, D.Q. Numerical predictions and stability analysis of cavitating draft tube vortices at high head in a model Francis turbine. Sci. China Technol. Sci. 2014, 57, 2106–2114. [Google Scholar] [CrossRef]
- Zhu, Z.F. Numerical study on characteristic correlation between cavitating flow and skew of ship propellers. Ocean Eng. 2015, 99, 63–71. [Google Scholar] [CrossRef]
- Peng, X.X.; Ji, B.; Cao, Y.; Xu, L.; Zhang, G.; Luo, X.; Long, X. Combined experimental observation and numerical simulation of the cloud cavitation with U-type flow structures on hydrofoils. Int. J. Multiph. Flow 2016, 79, 10–22. [Google Scholar] [CrossRef]
- Wang, G.; Senocak, I.; Shyy, W.; Ikohagi, T.; Cao, S. Dynamics of attached turbulent cavitating flows. Prog. Aerosp. Sci. 2001, 37, 551–581. [Google Scholar] [CrossRef]
- Barre, S.; Rolland, J.; Boitel, G.; Goncalves, E.; Patella, R.F. Experiments and modeling of cavitating flows in venturi: Attached sheet cavitation. Eur. J. Mech. B Fluid 2009, 28, 444–464. [Google Scholar] [CrossRef]
- Wu, Q.; Huang, B.; Wang, G.; Cao, S. The transient characteristics of cloud cavitating flow over a flexible hydrofoil. Int. J. Multiph. Flow 2018, 99, 162–173. [Google Scholar] [CrossRef]
- Gopalan, S.; Katz, J. Flow structure and modeling issues in the closure region of attached cavitation. Phys. Fluids 2000, 12, 895–911. [Google Scholar] [CrossRef]
- Foeth, E.J. The Structure of Three-Dimensional Sheet Cavitation. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2008. [Google Scholar]
- Luo, X.; Ji, B.; Zhang, Y.; Xu, H. Cavitating flow over a mini hydrofoil. Chin. Phys. Lett. 2012, 29, 016401. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, X.; Huang, C.; Wu, X. Unsteady characteristics of cloud cavitating flow near the free surface around an axisymmetric projectile. Int. J. Multiph. Flow 2016, 85, 48–56. [Google Scholar] [CrossRef]
- Arndt, R.E.A. Some remarks on hydrofoil cavitation. J. Hydrodyn. 2012, 24, 305–314. [Google Scholar] [CrossRef]
- Ganesh, H.; Makiharju, S.A.; Ceccio, S.L. Bubbly shock propagation as a mechanism for sheet-to-cloud transition of partial cavities. J. Fluid Mech. 2016, 802, 37–78. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Huang, B.; Wang, G.; Zhang, M.; Ding, N. Unsteady pressure fluctuation characteristics in the process of breakup and shedding of sheet/cloud cavitation. Int. J. Heat Mass Transf. 2017, 114, 769–785. [Google Scholar] [CrossRef]
- Knapp, R.T. Recent investigations of the mechanics of cavitation and cavitation damage. Trans. ASME 1955, 77, 1045–1054. [Google Scholar]
- Kawanami, Y.; Kato, H.; Yamaguchi, H.; Tanimura, M.; Tagaya, Y. Mechanism and control of cloud cavitation. J. Fluids Eng. 1997, 119, 788–794. [Google Scholar] [CrossRef]
- Pendar, M.R.; Roohi, E. Investigation of cavitation around 3D hemispherical head-form body and conical cavitators using different turbulence and cavitation models. Ocean Eng. 2016, 112, 287–306. [Google Scholar] [CrossRef]
- Park, S.; Rhee, S.H. Numerical analysis of the three-dimensional cloud cavitating flow around a twisted hydrofoil. Fluid Dyn. Res. 2012, 45, 201–218. [Google Scholar] [CrossRef]
- Dular, M.; Bachert, R.; Schaad, C.; Stoffel, B. Investigation of a re-entrant jet reflection at an inclined cavity closure line. Eur. J. Mech. B Fluids 2007, 26, 688–705. [Google Scholar] [CrossRef]
- Laberteaux, K.; Ceccio, S. Partial cavity flows. Part 1. Cavities forming on models without spanwise variation. J. Fluid Mech. 2001, 431, 1–41. [Google Scholar] [CrossRef]
- Le, Q.; Franc, J.P.; Michel, J.M. Partial cavities: Global behavior and mean pressure distribution. J. Fluids Eng. 1993, 115, 243–248. [Google Scholar] [CrossRef]
- Pham, T.M.; Larrarte, F.; Fruman, D.H. Investigation of unsteady sheet cavitation and cloud cavitation mechanisms. J. Fluids Eng. 1999, 121, 289–296. [Google Scholar] [CrossRef]
- Ji, B.; Long, Y.; Long, X.; Qian, Z.; Zhou, J. Large eddy simulation of turbulent attached cavitating flow with special emphasis on large scale structures of the hydrofoil wake and turbulence-cavitation interactions. J. Hydrodyn. 2017, 29, 27–39. [Google Scholar] [CrossRef]
- Smagorinsky, J. General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weather Rev. 1963, 91, 99–164. [Google Scholar] [CrossRef]
- Huang, B.; Zhao, Y.; Wang, G. Large eddy simulation of turbulent vortex cavitation interactions in transient sheet/cloud cavitating flows. Comput. Fluids 2014, 92, 113–124. [Google Scholar] [CrossRef]
- Luo, X.; Ji, B.; Peng, X.; Xu, H.; Nishi, M. Numerical simulation of cavity shedding from a three-dimensional twisted hydrofoil and induced pressure fluctuation by large-eddy simulation. J. Fluids Eng. 2012, 134, 379–389. [Google Scholar] [CrossRef]
- Dittakavi, N.; Chunekar, A.; Frankel, S. Large eddy simulation of turbulent-cavitation interactions in a Venturi nozzle. J. Fluids Eng. 2010, 132, 121301. [Google Scholar] [CrossRef]
- Gnanaskandan, A.; Mahesh, K. Large eddy simulation of the transition from sheet to cloud cavitation over a wedge. Int. J. Multiph. Flow 2016, 83, 86–102. [Google Scholar] [CrossRef]
- Liu, M.; Tan, L.; Liu, Y.; Xu, Y.; Cao, S. Large eddy simulation of cavitation vortex interaction and pressure fluctuation around hydrofoil ALE 15. Ocean Eng. 2018, 163, 264–274. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, X.; Li, J.; Gong, Z.; Lu, C. Large eddy simulation and investigation on the flow structure of the cascading cavitation shedding regime around 3D twisted hydrofoil. Ocean Eng. 2017, 129, 1–19. [Google Scholar] [CrossRef]
- Ji, B.; Luo, X.W.; Arndt, R.E.; Peng, X.; Wu, Y. Large eddy simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil. Int. J. Multiph. Flow 2015, 68, 121–134. [Google Scholar] [CrossRef]
- Li, L.; Li, B.; Hu, Z.; Lin, Y.; Cheung, S.C. Large eddy simulation of unsteady shedding behavior in cavitating flows with time-average validation. Ocean Eng. 2016, 125, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Ostoja-Starzewski, M. Large eddy simulation of a sheet/cloud cavitation on a NACA0015 hydrofoil. Appl. Math. Model. 2007, 31, 417–447. [Google Scholar] [CrossRef]
- Dai, S.; Younis, B.A.; Sun, L. Large-eddy simulations of cavitation in a square surface cavity. Appl. Math. Model. 2014, 38, 5665–5683. [Google Scholar] [CrossRef]
- Roohi, E.; Zahiri, A.P.; Passandideh-Fard, M. Numerical simulation of cavitation around a two-dimensional hydrofoil using VOF method and LES turbulence model. Appl. Math. Model. 2013, 37, 6469–6488. [Google Scholar] [CrossRef]
- Ji, B.; Luo, X.; Peng, X.; Wu, Y. Three-dimensional large eddy simulation and vorticity analysis of unsteady cavitating flow around a twisted hydrofoil. J. Hydrodyn. 2013, 25, 510–519. [Google Scholar] [CrossRef]
- Zwart, P.J.; Gerber, A.G.; Belamri, T. A two-phase flow model for predicting cavitation dynamics. In Proceedings of the International Conference on Multiphase Flow, Yokohama, Japan, 3 May–4 June 2004. [Google Scholar]
- Nicoud, F.; Ducros, F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 1999, 62, 183–200. [Google Scholar] [CrossRef]
- ANSYS Inc. ANSYS CFX 18.0 Tutorials; ANSYS Inc.: Canonsburg, PA, USA, 2018. [Google Scholar]
- Ji, B.; Luo, X.W.; Peng, X.X.; Wu, Y.L.; Xu, H.Y. Numerical analysis of cavitation evolution and excited pressure fluctuation around a propeller in non-uniform wake. Int. J. Multiph. Flow 2012, 43, 13–21. [Google Scholar] [CrossRef]
- Ji, B.; Luo, X.W.; Arndt, R.E.A.; Wu, Y. Numerical simulation of three dimensional cavitation shedding dynamics with special emphasis on cavitation–vortex interaction. Ocean Eng. 2014, 87, 64–77. [Google Scholar] [CrossRef]
- Long, X.; Cheng, H.; Ji, B.; Arndt, R.E.A. Numerical investigation of attached cavitation shedding dynamics around the Clark-Y hydrofoil with the FBDCM and an integral method. Ocean Eng. 2017, 137, 247–261. [Google Scholar] [CrossRef]
- Long, X.; Cheng, H.; Ji, B.; Arndt, R.E.A.; Peng, X. Large eddy simulation and Euler–Lagrangian coupling investigation of the transient cavitating turbulent flow around a twisted hydrofoil. Int. J. Multiph. Flow 2018, 100, 41–56. [Google Scholar] [CrossRef]
- Bensow, R. Simulation of the unsteady cavitation on the the Delft Twist11 foil using RANS, DES and LES. In Proceedings of the International Symposium on Marine Propulsors, Hamburg, Germany, 15–17 June 2011. [Google Scholar]
- Foeth, E.J.; Terwisga, T.V.; Doorne, C.V. On the collapse structure of an attached cavity on a three-dimensional hydrofoil. J. Fluids Eng. Trans. ASME 2008, 130, 071303. [Google Scholar] [CrossRef]
- Callenaere, M.; Franc, J.P.; Michel, J.M.; Riondet, M. The cavitation instability induced by the development of a re-entrant jet. J. Fluid Mech. 2001, 444, 223–256. [Google Scholar] [CrossRef]
- Ji, B.; Luo, X.; Wu, Y.; Peng, X.; Duan, Y. Numerical analysis of unsteady cavitating turbulent flow and shedding horse-shoe vortex structure around a twisted hydrofoil. Int. J. Multiph. Flow 2013, 51, 33–43. [Google Scholar] [CrossRef]
- Xing, T. A general framework for verification and validation of large eddy simulations. J. Hydrodyn. 2015, 27, 163–175. [Google Scholar] [CrossRef]
- Dutta, R.; Xing, T. Five-equation and robust three-equation methods for solution verification of large eddy simulation. J. Hydrodyn. 2018, 30, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Long, X.; Long, Y.; Wang, W.; Cheng, H.; Ji, B. Some notes on numerical simulation and error analyses of the attached turbulent cavitating flow by LES. J. Hydrodyn. 2018, 30, 369–372. [Google Scholar] [CrossRef]
Case | Physical Model | Typical Geometry Size | Inflow Velocity | Cavitation Number |
---|---|---|---|---|
1 | Delft Twist-11 hydrofoil | C1 = 0.15 m, S1 = 0.3 m | 6.97 m/s | 1.07 |
2 | NACA0009 hydrofoil | C2 = S2 = 0.07 m | 7 m/s | 1.2 |
3 | Clark-y hydrofoil | C3 = S3 = 0.07 m | 7 m/s | 1.2 |
Cases | CL | f (HZ) |
---|---|---|
EXP [10] | 0.53 | 32.2 |
LES [45] | 0.44 | 34 |
LES, fine [45] | 0.45 | - |
DES [45] | 0.42 | 30 |
LES (in this work) | 0.45 | 34 |
Boundary Type | Location in the Domain | Variable | Value |
---|---|---|---|
Inlet | The left face | Velocity | 7 m/s |
Outlet | The right face | Static pressure | 32,510.2 Pa |
Wall | The upper, lower, and back side face | Free-slip | - |
Wall | The foil surface | No-slip | - |
Symmetry | The front side face | - | - |
Mesh | Grid Nodes | CL | CD |
---|---|---|---|
Coarse | 2.0 million | 0.768 | 0.056 |
Medium | 3.5 million | 0.755 | 0.053 |
Fine | 4.1 million | 0.755 | 0.052 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, C.; Chen, G.; Yang, L.; Wang, G. Large Eddy Simulation of Turbulent Attached Cavitating Flows around Different Twisted Hydrofoils. Energies 2018, 11, 2768. https://doi.org/10.3390/en11102768
Hu C, Chen G, Yang L, Wang G. Large Eddy Simulation of Turbulent Attached Cavitating Flows around Different Twisted Hydrofoils. Energies. 2018; 11(10):2768. https://doi.org/10.3390/en11102768
Chicago/Turabian StyleHu, Changli, Guanghao Chen, Long Yang, and Guoyu Wang. 2018. "Large Eddy Simulation of Turbulent Attached Cavitating Flows around Different Twisted Hydrofoils" Energies 11, no. 10: 2768. https://doi.org/10.3390/en11102768
APA StyleHu, C., Chen, G., Yang, L., & Wang, G. (2018). Large Eddy Simulation of Turbulent Attached Cavitating Flows around Different Twisted Hydrofoils. Energies, 11(10), 2768. https://doi.org/10.3390/en11102768