Large Eddy Simulation of Turbulent Attached Cavitating Flows around Different Twisted Hydrofoils
Abstract
1. Introduction
2. Numerical Methods and Validation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
| C | Chord length of hydrofoil, mm | 
| Cw | WALE constant | 
| CL | Lift coefficient | 
| CD | Drag coefficient | 
| f | Typical shedding frequency of cavity dynamic development | 
| Fc | Empirical condensation coefficient | 
| Fe | Empirical vaporization coefficient | 
| FL | Lift force | 
| FD | Drag force | 
| k | von Karman’s constant | 
| Ls | Mixing length for the sub-grid stresses | 
| LES | Large eddy simulation | 
| DES | Detached eddy simulation | 
| CFD | Computational fluid dynamics | 
| m+ | Condensation rates | 
| m− | Evaporation rates | 
| pv | Saturated vapor pressure | 
| pout | Outlet pressure | 
| RB | Radius of the nucleation sites | 
| S | Span length of hydrofoil | 
| C | The chord length of hydrofoil | 
| Strain rate tensor | |
| U∞ | Inlet velocity | 
| V | Volume of the computational cell | 
| Greek Letters | |
| ρm | Mixture density | 
| ρl | Water density | 
| ρv | Water vapor density | 
| αl | Water volume fraction | 
| αv | Water vapor | 
| αnuc | Volume fraction of the nucleation sites | 
| σ | Cavitation number | 
| μm | Mixture dynamic viscosity | 
| μt | Subgrid-scale turbulent viscosity | 
| τij | Subgrid-scale stresses | 
References
- Sedlar, M.; Ji, B.; Kratky, T.; Rebok, T.; Huzlik, R. Numerical and experimental investigation of three-dimensional cavitating flow around the straight NACA2412 hydrofoil. Ocean Eng. 2016, 123, 357–382. [Google Scholar] [CrossRef]
- Ji, B.; Wang, J.; Luo, X.; Miyagawa, K.; Xiao, L.Z.; Long, X.; Tsujimoto, Y. Numerical simulation of cavitation surge and vortical flows in a diffuser with swirling flow. J. Mech. Sci. Technol. 2016, 30, 2507–2514. [Google Scholar] [CrossRef]
- Zuo, Z.G.; Liu, S.H.; Liu, D.M.; Qin, D.Q. Numerical predictions and stability analysis of cavitating draft tube vortices at high head in a model Francis turbine. Sci. China Technol. Sci. 2014, 57, 2106–2114. [Google Scholar] [CrossRef]
- Zhu, Z.F. Numerical study on characteristic correlation between cavitating flow and skew of ship propellers. Ocean Eng. 2015, 99, 63–71. [Google Scholar] [CrossRef]
- Peng, X.X.; Ji, B.; Cao, Y.; Xu, L.; Zhang, G.; Luo, X.; Long, X. Combined experimental observation and numerical simulation of the cloud cavitation with U-type flow structures on hydrofoils. Int. J. Multiph. Flow 2016, 79, 10–22. [Google Scholar] [CrossRef]
- Wang, G.; Senocak, I.; Shyy, W.; Ikohagi, T.; Cao, S. Dynamics of attached turbulent cavitating flows. Prog. Aerosp. Sci. 2001, 37, 551–581. [Google Scholar] [CrossRef]
- Barre, S.; Rolland, J.; Boitel, G.; Goncalves, E.; Patella, R.F. Experiments and modeling of cavitating flows in venturi: Attached sheet cavitation. Eur. J. Mech. B Fluid 2009, 28, 444–464. [Google Scholar] [CrossRef]
- Wu, Q.; Huang, B.; Wang, G.; Cao, S. The transient characteristics of cloud cavitating flow over a flexible hydrofoil. Int. J. Multiph. Flow 2018, 99, 162–173. [Google Scholar] [CrossRef]
- Gopalan, S.; Katz, J. Flow structure and modeling issues in the closure region of attached cavitation. Phys. Fluids 2000, 12, 895–911. [Google Scholar] [CrossRef]
- Foeth, E.J. The Structure of Three-Dimensional Sheet Cavitation. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2008. [Google Scholar]
- Luo, X.; Ji, B.; Zhang, Y.; Xu, H. Cavitating flow over a mini hydrofoil. Chin. Phys. Lett. 2012, 29, 016401. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, X.; Huang, C.; Wu, X. Unsteady characteristics of cloud cavitating flow near the free surface around an axisymmetric projectile. Int. J. Multiph. Flow 2016, 85, 48–56. [Google Scholar] [CrossRef]
- Arndt, R.E.A. Some remarks on hydrofoil cavitation. J. Hydrodyn. 2012, 24, 305–314. [Google Scholar] [CrossRef]
- Ganesh, H.; Makiharju, S.A.; Ceccio, S.L. Bubbly shock propagation as a mechanism for sheet-to-cloud transition of partial cavities. J. Fluid Mech. 2016, 802, 37–78. [Google Scholar] [CrossRef]
- Wang, C.; Huang, B.; Wang, G.; Zhang, M.; Ding, N. Unsteady pressure fluctuation characteristics in the process of breakup and shedding of sheet/cloud cavitation. Int. J. Heat Mass Transf. 2017, 114, 769–785. [Google Scholar] [CrossRef]
- Knapp, R.T. Recent investigations of the mechanics of cavitation and cavitation damage. Trans. ASME 1955, 77, 1045–1054. [Google Scholar]
- Kawanami, Y.; Kato, H.; Yamaguchi, H.; Tanimura, M.; Tagaya, Y. Mechanism and control of cloud cavitation. J. Fluids Eng. 1997, 119, 788–794. [Google Scholar] [CrossRef]
- Pendar, M.R.; Roohi, E. Investigation of cavitation around 3D hemispherical head-form body and conical cavitators using different turbulence and cavitation models. Ocean Eng. 2016, 112, 287–306. [Google Scholar] [CrossRef]
- Park, S.; Rhee, S.H. Numerical analysis of the three-dimensional cloud cavitating flow around a twisted hydrofoil. Fluid Dyn. Res. 2012, 45, 201–218. [Google Scholar] [CrossRef]
- Dular, M.; Bachert, R.; Schaad, C.; Stoffel, B. Investigation of a re-entrant jet reflection at an inclined cavity closure line. Eur. J. Mech. B Fluids 2007, 26, 688–705. [Google Scholar] [CrossRef]
- Laberteaux, K.; Ceccio, S. Partial cavity flows. Part 1. Cavities forming on models without spanwise variation. J. Fluid Mech. 2001, 431, 1–41. [Google Scholar] [CrossRef]
- Le, Q.; Franc, J.P.; Michel, J.M. Partial cavities: Global behavior and mean pressure distribution. J. Fluids Eng. 1993, 115, 243–248. [Google Scholar] [CrossRef]
- Pham, T.M.; Larrarte, F.; Fruman, D.H. Investigation of unsteady sheet cavitation and cloud cavitation mechanisms. J. Fluids Eng. 1999, 121, 289–296. [Google Scholar] [CrossRef]
- Ji, B.; Long, Y.; Long, X.; Qian, Z.; Zhou, J. Large eddy simulation of turbulent attached cavitating flow with special emphasis on large scale structures of the hydrofoil wake and turbulence-cavitation interactions. J. Hydrodyn. 2017, 29, 27–39. [Google Scholar] [CrossRef]
- Smagorinsky, J. General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weather Rev. 1963, 91, 99–164. [Google Scholar] [CrossRef]
- Huang, B.; Zhao, Y.; Wang, G. Large eddy simulation of turbulent vortex cavitation interactions in transient sheet/cloud cavitating flows. Comput. Fluids 2014, 92, 113–124. [Google Scholar] [CrossRef]
- Luo, X.; Ji, B.; Peng, X.; Xu, H.; Nishi, M. Numerical simulation of cavity shedding from a three-dimensional twisted hydrofoil and induced pressure fluctuation by large-eddy simulation. J. Fluids Eng. 2012, 134, 379–389. [Google Scholar] [CrossRef]
- Dittakavi, N.; Chunekar, A.; Frankel, S. Large eddy simulation of turbulent-cavitation interactions in a Venturi nozzle. J. Fluids Eng. 2010, 132, 121301. [Google Scholar] [CrossRef]
- Gnanaskandan, A.; Mahesh, K. Large eddy simulation of the transition from sheet to cloud cavitation over a wedge. Int. J. Multiph. Flow 2016, 83, 86–102. [Google Scholar] [CrossRef]
- Liu, M.; Tan, L.; Liu, Y.; Xu, Y.; Cao, S. Large eddy simulation of cavitation vortex interaction and pressure fluctuation around hydrofoil ALE 15. Ocean Eng. 2018, 163, 264–274. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, X.; Li, J.; Gong, Z.; Lu, C. Large eddy simulation and investigation on the flow structure of the cascading cavitation shedding regime around 3D twisted hydrofoil. Ocean Eng. 2017, 129, 1–19. [Google Scholar] [CrossRef]
- Ji, B.; Luo, X.W.; Arndt, R.E.; Peng, X.; Wu, Y. Large eddy simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil. Int. J. Multiph. Flow 2015, 68, 121–134. [Google Scholar] [CrossRef]
- Li, L.; Li, B.; Hu, Z.; Lin, Y.; Cheung, S.C. Large eddy simulation of unsteady shedding behavior in cavitating flows with time-average validation. Ocean Eng. 2016, 125, 1–11. [Google Scholar] [CrossRef]
- Wang, G.; Ostoja-Starzewski, M. Large eddy simulation of a sheet/cloud cavitation on a NACA0015 hydrofoil. Appl. Math. Model. 2007, 31, 417–447. [Google Scholar] [CrossRef]
- Dai, S.; Younis, B.A.; Sun, L. Large-eddy simulations of cavitation in a square surface cavity. Appl. Math. Model. 2014, 38, 5665–5683. [Google Scholar] [CrossRef]
- Roohi, E.; Zahiri, A.P.; Passandideh-Fard, M. Numerical simulation of cavitation around a two-dimensional hydrofoil using VOF method and LES turbulence model. Appl. Math. Model. 2013, 37, 6469–6488. [Google Scholar] [CrossRef]
- Ji, B.; Luo, X.; Peng, X.; Wu, Y. Three-dimensional large eddy simulation and vorticity analysis of unsteady cavitating flow around a twisted hydrofoil. J. Hydrodyn. 2013, 25, 510–519. [Google Scholar] [CrossRef]
- Zwart, P.J.; Gerber, A.G.; Belamri, T. A two-phase flow model for predicting cavitation dynamics. In Proceedings of the International Conference on Multiphase Flow, Yokohama, Japan, 3 May–4 June 2004. [Google Scholar]
- Nicoud, F.; Ducros, F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 1999, 62, 183–200. [Google Scholar] [CrossRef]
- ANSYS Inc. ANSYS CFX 18.0 Tutorials; ANSYS Inc.: Canonsburg, PA, USA, 2018. [Google Scholar]
- Ji, B.; Luo, X.W.; Peng, X.X.; Wu, Y.L.; Xu, H.Y. Numerical analysis of cavitation evolution and excited pressure fluctuation around a propeller in non-uniform wake. Int. J. Multiph. Flow 2012, 43, 13–21. [Google Scholar] [CrossRef]
- Ji, B.; Luo, X.W.; Arndt, R.E.A.; Wu, Y. Numerical simulation of three dimensional cavitation shedding dynamics with special emphasis on cavitation–vortex interaction. Ocean Eng. 2014, 87, 64–77. [Google Scholar] [CrossRef]
- Long, X.; Cheng, H.; Ji, B.; Arndt, R.E.A. Numerical investigation of attached cavitation shedding dynamics around the Clark-Y hydrofoil with the FBDCM and an integral method. Ocean Eng. 2017, 137, 247–261. [Google Scholar] [CrossRef]
- Long, X.; Cheng, H.; Ji, B.; Arndt, R.E.A.; Peng, X. Large eddy simulation and Euler–Lagrangian coupling investigation of the transient cavitating turbulent flow around a twisted hydrofoil. Int. J. Multiph. Flow 2018, 100, 41–56. [Google Scholar] [CrossRef]
- Bensow, R. Simulation of the unsteady cavitation on the the Delft Twist11 foil using RANS, DES and LES. In Proceedings of the International Symposium on Marine Propulsors, Hamburg, Germany, 15–17 June 2011. [Google Scholar]
- Foeth, E.J.; Terwisga, T.V.; Doorne, C.V. On the collapse structure of an attached cavity on a three-dimensional hydrofoil. J. Fluids Eng. Trans. ASME 2008, 130, 071303. [Google Scholar] [CrossRef]
- Callenaere, M.; Franc, J.P.; Michel, J.M.; Riondet, M. The cavitation instability induced by the development of a re-entrant jet. J. Fluid Mech. 2001, 444, 223–256. [Google Scholar] [CrossRef]
- Ji, B.; Luo, X.; Wu, Y.; Peng, X.; Duan, Y. Numerical analysis of unsteady cavitating turbulent flow and shedding horse-shoe vortex structure around a twisted hydrofoil. Int. J. Multiph. Flow 2013, 51, 33–43. [Google Scholar] [CrossRef]
- Xing, T. A general framework for verification and validation of large eddy simulations. J. Hydrodyn. 2015, 27, 163–175. [Google Scholar] [CrossRef]
- Dutta, R.; Xing, T. Five-equation and robust three-equation methods for solution verification of large eddy simulation. J. Hydrodyn. 2018, 30, 23–33. [Google Scholar] [CrossRef]
- Long, X.; Long, Y.; Wang, W.; Cheng, H.; Ji, B. Some notes on numerical simulation and error analyses of the attached turbulent cavitating flow by LES. J. Hydrodyn. 2018, 30, 369–372. [Google Scholar] [CrossRef]










| Case | Physical Model | Typical Geometry Size | Inflow Velocity | Cavitation Number | 
|---|---|---|---|---|
| 1 | Delft Twist-11 hydrofoil | C1 = 0.15 m, S1 = 0.3 m | 6.97 m/s | 1.07 | 
| 2 | NACA0009 hydrofoil | C2 = S2 = 0.07 m | 7 m/s | 1.2 | 
| 3 | Clark-y hydrofoil | C3 = S3 = 0.07 m | 7 m/s | 1.2 | 
| Cases | CL | f (HZ) | 
|---|---|---|
| EXP [10] | 0.53 | 32.2 | 
| LES [45] | 0.44 | 34 | 
| LES, fine [45] | 0.45 | - | 
| DES [45] | 0.42 | 30 | 
| LES (in this work) | 0.45 | 34 | 
| Boundary Type | Location in the Domain | Variable | Value | 
|---|---|---|---|
| Inlet | The left face | Velocity | 7 m/s | 
| Outlet | The right face | Static pressure | 32,510.2 Pa | 
| Wall | The upper, lower, and back side face | Free-slip | - | 
| Wall | The foil surface | No-slip | - | 
| Symmetry | The front side face | - | - | 
| Mesh | Grid Nodes | CL | CD | 
|---|---|---|---|
| Coarse | 2.0 million | 0.768 | 0.056 | 
| Medium | 3.5 million | 0.755 | 0.053 | 
| Fine | 4.1 million | 0.755 | 0.052 | 
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, C.; Chen, G.; Yang, L.; Wang, G. Large Eddy Simulation of Turbulent Attached Cavitating Flows around Different Twisted Hydrofoils. Energies 2018, 11, 2768. https://doi.org/10.3390/en11102768
Hu C, Chen G, Yang L, Wang G. Large Eddy Simulation of Turbulent Attached Cavitating Flows around Different Twisted Hydrofoils. Energies. 2018; 11(10):2768. https://doi.org/10.3390/en11102768
Chicago/Turabian StyleHu, Changli, Guanghao Chen, Long Yang, and Guoyu Wang. 2018. "Large Eddy Simulation of Turbulent Attached Cavitating Flows around Different Twisted Hydrofoils" Energies 11, no. 10: 2768. https://doi.org/10.3390/en11102768
APA StyleHu, C., Chen, G., Yang, L., & Wang, G. (2018). Large Eddy Simulation of Turbulent Attached Cavitating Flows around Different Twisted Hydrofoils. Energies, 11(10), 2768. https://doi.org/10.3390/en11102768
 
        
 
                         
       