Application and Comparison of Metaheuristic and New Metamodel Based Global Optimization Methods to the Optimal Operation of Active Distribution Networks
Abstract
:1. Introduction
2. Uncertainty Modeling of Distributed Generations and Loads
2.1. Wind Power
2.2. Photovoltaic Power
2.3. Load Fluctuation
3. Formulation of the ADN Optimal Operation Problem
3.1. Scenario Generation
- (1)
- For any random variable , the probability of the vertical axis of the cumulative probability distribution curve of is divided into intervals, and a value is randomly extracted in each interval:
- (2)
- For the k-th sample of the random variable , the corresponding cumulative distribution probability (CDF) is:
- (3)
- After the sampling is completed, the sampling values of each random variable are arranged in a column of the matrix to form a sampling matrix. The Gram-Schmidt sequence orthogonalization method is used to sort the matrix [33], and the correlation of each column is minimized by iterative calculation. Therefore, sampling scenarios are formed.
3.2. Scenario Reduction
- (1)
- Calculate the probability distance between scenario and . , .
- (2)
- For each scenario , find the scenario with the shortest distance, , .
- (3)
- If the probability of scenario is , calculate and determining the scenario to be deleted by formula .
- (4)
- Corrected scenario set and the set of deleted scenarios and its associated probabilities by , , .
- (5)
- , if , then the iteration is terminated, otherwise, go to step (2).
3.3. Objective Function of the Optimization
3.4. Constraints of the Optimization
- (a)
- Power flow equality constraints
- (b)
- Dispatchable DGs operation constraints: mainly including the upper and lower boundary constraints and the ramp rate limit.
- (c)
- ESS operation constraints: mainly including the charge and discharge power limits of ESS, the state of charge (SOC) constraints of ESS:
- (d)
- System node voltage and Line transmission power constraints:
3.5. Conversion to an Unconstrained Optimization Problem
4. Traditional GO and MBGO Solution Methods
4.1. Traditional Optimization Methods
4.2. More Recently Introduced Metamodel Based Global Optimization (MBGO) Methods
4.2.1. SEUMRE Algorithm
4.2.2. Hybrid and Adaptive Metamodel-Based (HAM) Algorithm
4.2.3. MPS Algorithm
4.2.4. MSSR Algorithm
4.3. Integrated ADN Operation Simulation and Optimization Platform
4.4. Operation Optimization Procedure
5. Case Studies
5.1. IEEE 13 Node System—A Small Distribution Network
5.1.1. Network Structure and Results of the Optimization
5.1.2. Computation Time and NFE Measures on Computation Efficiency of Optimization Techniques
- The needed computation time shows the feasibility of the approach for real-time optimal and dynamics network operation control and scheduling for this given problem. The measure is only important for computation intensive problem and for solution time-constrained real-time applications.
- The needed NFE, as an impartial measure shows the relative computation efficiency of the algorithm, regardless of the computation intensity of the objective function and the capability of the used computer. Specifically it indicates the potential of the approach to be used for more complex ADN network optimization problem.
5.1.3. Test Case 1 Result Analysis and Discussion
5.1.4. Considerations on Multiple and Competing Optimization Objectives
5.2. IEEE 33 Node System—A Medium-Size Distribution Network
5.3. IEEE 123 Node System—A Large-Scale Distribution Network
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- McDonald, J. Adaptive intelligent power systems: Active distribution networks. Energy Policy 2008, 36, 4346–4351. [Google Scholar] [CrossRef]
- Zhigljavsky, A.; Zilinskas, A. Stochastic Global Optimization; Springer Science & Business Media: Berlin, Germany, 2007; Volume 9. [Google Scholar]
- Ezzati, S.M.; Vahedi, H.; Yousefi, G.R.; Pedram, M.M. Security Constrained Optimal Power Flow Solved by Mixed Integer Non Linear Programming. Int. Rev. Electr. Eng. 2011, 6, 3051–3057. [Google Scholar]
- Wibowo, R.S.; Maulana, R.; Taradini, A.; Pamuji, F.A.; Soeprijanto, A.; Penangsang, O. Quadratic Programming Approach for Security Constrained Optimal Power Flow. In Proceedings of the 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE), Chiang Mai, Thailand, 29–30 October 2015; pp. 200–203. [Google Scholar]
- Ferreira, R.S.; Borges, C.L.T.; Pereira, M.V.F. A Flexible Mixed-Integer Linear Programming Approach to the AC Optimal Power Flow in Distribution Systems. IEEE Trans. Power Syst. 2014, 29, 2447–2459. [Google Scholar] [CrossRef]
- El Ela, A.A.A.; Abido, M.A.; Spea, S.R. Optimal power flow using differential evolution algorithm. Electr. Power Syst. Res. 2010, 80, 878–885. [Google Scholar] [CrossRef]
- Hazra, J.; Sinha, A.K. A multi-objective optimal power flow using particle swarm optimization. Eur. Trans. Electr. Power 2011, 21, 1028–1045. [Google Scholar] [CrossRef]
- Todorovski, M.; Rajicic, D. An initialization procedure in solving optimal power flow by genetic algorithm. IEEE Trans. Power Syst. 2006, 21, 480–487. [Google Scholar] [CrossRef]
- Kahourzade, S.; Mahmoudi, A.; Mokhlis, H.B. A comparative study of multi-objective optimal power flow based on particle swarm, evolutionary programming, and genetic algorithm. Electr. Eng. 2015, 97, 1–12. [Google Scholar] [CrossRef]
- Lo, C.H.; Chung, C.Y.; Nguyen, D.H.M.; Wong, K.P. A parallel evolutionary programming based optimal power flow algorithm and its implementation. In Proceedings of the 2004 International Conference on Machine Learning and Cybernetics, Shanghai, China, 26–29 August 2004; Volume 1–7, pp. 2543–2548. [Google Scholar]
- Niknam, T.; Narimani, M.R.; Jabbari, M. Dynamic optimal power flow using hybrid particle swarm optimization and simulated annealing. Int. Trans. Electr. Energy Syst. 2013, 23, 975–1001. [Google Scholar] [CrossRef]
- Duman, S.; Guvenc, U.; Sonmez, Y.; Yorukeren, N. Optimal power flow using gravitational search algorithm. Energy Convers. Manag. 2012, 59, 86–95. [Google Scholar] [CrossRef]
- Radosavljevic, J.; Jevtic, M.; Arsic, N.; Klimenta, D. Optimal power flow for distribution networks using gravitational search algorithm. Electr. Eng. 2014, 96, 335–345. [Google Scholar] [CrossRef]
- Abido, M.A. Optimal power flow using tabu search algorithm. Electr. Power Compon. Syst. 2002, 30, 469–483. [Google Scholar] [CrossRef]
- Ayan, K.; Kilic, U. Solution of Multi-Objective Optimal Power Flow with Chaotic Artificial Bee Colony Algorithm. Int. Rev. Electr. Eng. 2011, 6, 1365–1371. [Google Scholar]
- Ghasemi, M.; Ghavidel, S.; Ghanbarian, M.M.; Massrur, H.R.; Gharibzadeh, M. Application of imperialist competitive algorithm with its modified techniques for multi-objective optimal power flow problem: A comparative study. Inf. Sci. 2014, 281, 225–247. [Google Scholar] [CrossRef]
- Weise, T.; Wu, Y.Z.; Chiong, R.; Tang, K.; Lassig, J. Global versus local search: The impact of population sizes on evolutionary algorithm performance. J. Glob. Optim. 2016, 66, 511–534. [Google Scholar] [CrossRef]
- Montenegro, D.; Hernandez, M.; Ramos, G.A. Real Time OpenDSS framework for Distribution Systems Simulation and Analysis. In Proceedings of the 2012 Sixth IEEE/PES Transmission and Distribution: Latin America Conference and Exposition (T&D-La), Montevideo, Uruguay, 3–5 September 2012. [Google Scholar]
- Kvasov, D.E.; Sergeyev, Y.D. Deterministic approaches for solving practical black-box global optimization problems. Adv. Eng. Softw. 2015, 80, 58–66. [Google Scholar] [CrossRef]
- Kvasov, D.; Menniti, D.; Pinnarelli, A.; Sergeyev, Y.D.; Sorrentino, N. Tuning fuzzy power-system stabilizers in multi-machine systems by global optimization algorithms based on efficient domain partitions. Electr. Power Syst. Res. 2008, 78, 1217–1229. [Google Scholar] [CrossRef]
- Younis, A.; Dong, Z.M. Trends, features, and tests of common and recently introduced global optimization methods. Eng. Optim. 2010, 42, 691–718. [Google Scholar] [CrossRef]
- Li, L.; Dong, J.; Dong, J.G.; Yu, B.; Peng, J.C.; He, J.B. Prediction of the spatial distribution of bovine endemic fluorosis using ordinary kriging. Bull. Vet. Inst. Pulawy 2015, 59, 161–164. [Google Scholar] [CrossRef]
- Fang, H.B.; Horstemeyer, M.F. Global response approximation with radial basis functions. Eng. Optim. 2006, 38, 407–424. [Google Scholar] [CrossRef]
- Wang, G.G.; Shan, S. Review of metamodeling techniques in support of engineering design optimization. J. Mech. Des. 2007, 129, 370–380. [Google Scholar] [CrossRef]
- Dong, H.; Song, B.; Dong, Z.; Wang, P. Multi-start Space Reduction (MSSR) surrogate-based global optimization method. Struct. Multidiscip. Optim. 2016, 54, 906–926. [Google Scholar] [CrossRef]
- Shan, S.; Wang, G.G. Survey of Modeling and Optimization Strategies for High-Dimensional Design Problems. In Proceedings of the AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Victoria, BC, Canada, 10–12 September 2008; pp. 184–194. [Google Scholar]
- Haftka, R.T.; Villanueva, D.; Chaudhuri, A. Parallel surrogate-assisted global optimization with expensive functions—A survey. Struct. Multidiscip. Optim. 2016, 54, 3–13. [Google Scholar] [CrossRef]
- Chellali, F.; Khellaf, A.; Belouchrani, A.; Khanniche, R. A comparison between wind speed distributions derived from the maximum entropy principle and Weibull distribution. Case of study; six regions of Algeria. Renew. Sustain. Energy Rev. 2012, 16, 379–385. [Google Scholar] [CrossRef]
- Ettoumi, F.Y.; Mefti, A.; Adane, A.; Bouroubi, M.Y. Statistical analysis of solar measurements in Algeria using beta distributions. Renew. Energy 2002, 26, 47–67. [Google Scholar] [CrossRef]
- Sobu, A.; Wu, G. Optimal operation planning method for isolated micro grid considering uncertainties of renewable power generations and load demand. In Proceedings of the 2012 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), Tianjin, China, 21–24 May 2012; pp. 1–6. [Google Scholar] [CrossRef]
- Singh, R.; Pal, B.C.; Jabr, R.A. Statistical representation of distribution system loads using Gaussian mixture model. IEEE Trans. Power Syst. 2010, 25, 29–37. [Google Scholar] [CrossRef]
- Iman, R.L. Latin Hypercube Sampling; Wiley Online Library: Hoboken, NJ, USA, 2008. [Google Scholar]
- Owen, A.B. Controlling correlations in Latin hypercube samples. J. Am. Stat. Assoc. 1994, 89, 1517–1522. [Google Scholar] [CrossRef]
- Growe-Kuska, N.; Heitsch, H.; Romisch, W. Scenario reduction and scenario tree construction for power management problems. In Proceedings of the 2003 IEEE Bologna Power Tech Conference, Bologna, Italy, 23–26 June 2003; Volume 3, p. 7. [Google Scholar]
- Mohammadi, S.; Soleymani, S.; Mozafari, B. Scenario-based stochastic operation management of microgrid including wind, photovoltaic, micro-turbine, fuel cell and energy storage devices. Int. J. Electr. Power Energy Syst. 2014, 54, 525–535. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Holland, J.H. Genetic Algorithms. Sci. Am. 1992, 267, 66–72. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the 1995 IEEE International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; Volume 1–6, pp. 1942–1948. [Google Scholar]
- Younis, A.; Dong, Z.M. Metamodelling and search using space exploration and unimodal region elimination for design optimization. Eng. Optim. 2010, 42, 517–533. [Google Scholar] [CrossRef]
- Gu, J.; Li, G.Y.; Dong, Z. Hybrid and adaptive meta-model-based global optimization. Eng. Optim. 2012, 44, 87–104. [Google Scholar] [CrossRef]
- Wang, L.Q.; Shan, S.Q.; Wang, G.G. Mode-pursuing sampling method for global optimization on expensive black-box functions. Eng. Optim. 2004, 36, 419–438. [Google Scholar] [CrossRef]
- Paudyal, S.; Canizares, C.A.; Bhattacharya, K. Optimal Operation of Distribution Feeders in Smart Grids. IEEE Trans. Ind. Electron. 2011, 58, 4495–4503. [Google Scholar] [CrossRef]
- Rekha, E.; Sattianadan, D.; Sudhakaran, M. Maximum Loss Reduction and Voltage Profile Improvement with Placement of Hybrid Solar-Wind System. Energy Effic. Technol. Sustain. 2013, 768, 371–377. [Google Scholar] [CrossRef]
- Rao, R.S.; Narasimham, S.V.L.; Raju, M.R.; Rao, A.S. Optimal Network Reconfiguration of Large-Scale Distribution System Using Harmony Search Algorithm. IEEE Trans. Power Syst. 2011, 26, 1080–1088. [Google Scholar]
- Daratha, N.; Das, B.; Sharma, J. Coordination Between OLTC and SVC for Voltage Regulation in Unbalanced Distribution System Distributed Generation. IEEE Trans. Power Syst. 2014, 29, 289–299. [Google Scholar] [CrossRef]
- Kersting, W. Radial distribution test feeders. In Proceedings of the 2001 IEEE Power Engineering Society Winter Meeting, Columbus, OH, USA, 28 January–1 February 2001; Volume 1–3, pp. 908–912. [Google Scholar]
Type of DG | Access Node | Pmax (MW) | Pmin (MW) | (MW/min) | Vbase (kV) |
---|---|---|---|---|---|
DS | 670 | 0.50 | 0.00 | 0.1 | 4.16 |
FC | 675 | 0.80 | 0.00 | 0.16 | 4.16 |
MT | 671 | 1.00 | 0.00 | 0.2 | 4.16 |
Algorithms | SEUMRE | HAM | MSSR | MPS | GA | SA | PSO |
---|---|---|---|---|---|---|---|
Average Power Loss (kW) | 21.1973 | 21.1962 | 21.1993 | 21.1999 | 21.1997 | 21.1987 | 21.1994 |
Running Time (s) | 4.15956 | 215.125 | 137.062 | 31.6809 | 37.76787 | 60.79356 | 28.64178 |
NFE (times) | 4740 | 6510 | 2000 | 11,920 | 50,500 | 59,410 | 40,200 |
Type of DG | Access Node | Pmax (MW) | Pmin (MW) | (MW/min) | Vbase (kV) |
---|---|---|---|---|---|
MT1 | 8 | 0.80 | 0.00 | 0.16 | 12.66 |
MT2 | 12 | 0.60 | 0.00 | 0.12 | 12.66 |
MT3 | 18 | 0.40 | 0.00 | 0.08 | 12.66 |
FC1 | 6 | 0.80 | 0.00 | 0.16 | 12.66 |
FC2 | 28 | 1.00 | 0.00 | 0.2 | 12.66 |
FC3 | 33 | 0.80 | 0.00 | 0.2 | 12.66 |
Type of ESS | Access Node | Pmax (MW) | Pmin (MW) | |||
---|---|---|---|---|---|---|
ESS1 | 23 | 1.00 | −1.00 | 0.9/0.9 | 90% | 10% |
ESS2 | 20 | 0.50 | −0.50 | 0.95/0.95 | 90% | 10% |
Algorithms | SEUMRE | HAM | MSSR | MPS | GA | SA | PSO |
---|---|---|---|---|---|---|---|
Average Power Loss (kW) | 9.4587 | 9.4622 | 9.4646 | 9.4842 | 9.4863 | 9.4596 | 9.4709 |
Running Time (s) | 7.8537 | 190.2367 | 173.8665 | 99.8367 | 90.0481 | 132.9006 | 50.6816 |
NFE (times) | 2780 | 3780 | 2020 | 4555 | 50,500 | 192,010 | 20,200 |
Algorithms | SEUMRE | HAM | MSSR | MPS | GA | SA | PSO |
---|---|---|---|---|---|---|---|
ESS1 sizing capacity (kW) | 1081.62 | 1078.78 | 1086.84 | 1084.06 | 1098.42 | 1083.83 | 1094.90 |
ESS2 sizing capacity (kW) | 1571.14 | 1579.04 | 1572.38 | 1596.27 | 1564.05 | 1614.71 | 1573.87 |
Annual Power Loss cost ($) | 49,545.39 | 49,545.26 | 49,545.51 | 49,545.49 | 49,545.57 | 49,545.59 | 49,546.08 |
Running Time (s) | 640.890 | 1509.91 | 847.920 | 1629.4 | 12824.9 | 5619.20 | 2449.54 |
NFE (times) | 2370 | 6300 | 2040 | 2629 | 50,500 | 168,10 | 10,100 |
Type of DG | Access Node | Pmax (MW) | Pmin (MW) | (MW/min) | Vbase (kV) |
---|---|---|---|---|---|
DS1 | 20 | 2.00 | 0.00 | 0.2 | 2.4 |
DS2 | 23 | 2.00 | 0.00 | 0.2 | 2.4 |
DS3 | 25 | 1.00 | 0.00 | 0.15 | 2.4 |
DS4 | 27 | 1.00 | 0.00 | 0.15 | 2.4 |
DS5 | 31 | 1.00 | 0.00 | 0.1 | 2.4 |
DS6 | 33 | 1.00 | 0.00 | 0.1 | 2.4 |
FC1 | 16 | 1.00 | 0.00 | 0.2 | 2.4 |
FC2 | 6 | 2.00 | 0.00 | 0.4 | 2.4 |
FC3 | 10 | 1.00 | 0.00 | 0.25 | 2.4 |
FC4 | 8 | 1.00 | 0.00 | 0.25 | 2.4 |
FC5 | 4 | 1.00 | 0.00 | 0.2 | 2.4 |
FC6 | 14 | 1.00 | 0.00 | 0.2 | 2.4 |
MT1 | 88 | 2.00 | 0.00 | 0.4 | 2.4 |
MT2 | 80 | 1.00 | 0.00 | 0.25 | 2.4 |
MT3 | 90 | 1.00 | 0.00 | 0.25 | 2.4 |
MT4 | 93 | 1.00 | 0.00 | 0.2 | 2.4 |
MT5 | 97 | 2.00 | 0.00 | 0.5 | 2.4 |
MT6 | 100 | 1.00 | 0.00 | 0.25 | 2.4 |
MT7 | 102 | 2.00 | 0.00 | 0.4 | 2.4 |
MT8 | 105 | 1.00 | 0.00 | 0.2 | 2.4 |
Algorithms | SEUMRE | HAM | MSSR | MPS | GA | SA | PSO |
---|---|---|---|---|---|---|---|
Average Power Loss (kW) | 36.8860 | 39.2078 | 39.4498 | 38.3270 | 36.6471 | 35.7628 | 35.9531 |
Running Time (s) | 463.227 | 1865.49 | 5730.81 | 2142.685 | 420.0060 | 1650.756 | 160.4970 |
NFE (times) | 31,890 | 6310 | 13,540 | 22,969 | 100,500 | 396,010 | 40,200 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, H.; Pei, W.; Dong, Z.; Kong, L.; Wang, D. Application and Comparison of Metaheuristic and New Metamodel Based Global Optimization Methods to the Optimal Operation of Active Distribution Networks. Energies 2018, 11, 85. https://doi.org/10.3390/en11010085
Xiao H, Pei W, Dong Z, Kong L, Wang D. Application and Comparison of Metaheuristic and New Metamodel Based Global Optimization Methods to the Optimal Operation of Active Distribution Networks. Energies. 2018; 11(1):85. https://doi.org/10.3390/en11010085
Chicago/Turabian StyleXiao, Hao, Wei Pei, Zuomin Dong, Li Kong, and Dan Wang. 2018. "Application and Comparison of Metaheuristic and New Metamodel Based Global Optimization Methods to the Optimal Operation of Active Distribution Networks" Energies 11, no. 1: 85. https://doi.org/10.3390/en11010085
APA StyleXiao, H., Pei, W., Dong, Z., Kong, L., & Wang, D. (2018). Application and Comparison of Metaheuristic and New Metamodel Based Global Optimization Methods to the Optimal Operation of Active Distribution Networks. Energies, 11(1), 85. https://doi.org/10.3390/en11010085