Online Parameter Identification and State of Charge Estimation of Lithium-Ion Batteries Based on Forgetting Factor Recursive Least Squares and Nonlinear Kalman Filter
Abstract
:1. Introduction
1.1. Review of the SOC Estimation Approaches
1.2. Contribution of the Paper
1.3. Organization of the Paper
2. Identification of Battery Model Parameters
2.1. Building the Battery Modelion
2.2. Offline Parameters Identification
2.3. Online Parameters Identification by Forgetting Factor Recursive Least Squares
3. Joint Algorithms of SOC Estimation
3.1. Application of Nonlinear Kalman Filter in Nonlinear System
- (1)
- Initialization
- (2)
- Prediction module
- (3)
- Error correction module
- (1)
- Initialization
- (2)
- Prediction module
- (3)
- Error correction module
3.2. Establishment of State Space Model of Thevenin Model
3.3. Joint Algorithms Based on FFRLS and Nonlinear Kalman Filter
4. Experiments and Discussion
4.1. Experiments
4.2. Verification of Online Parameters Identification
- (1)
- Set the ambient temperature to constant 60 °C, rest for 2 h.
- (2)
- Charge the battery fully (SOC = 1).
- (3)
- Discharge at 3 C for 10 s and then rest for 1 h.
- (4)
- 1 C current discharge until SOC = 0.9 and then rest for 1 min.
- (5)
- Discharge at 3 C for 10 s and then rest for 1 h.
- (6)
- Loop through steps 4 and 5.
- (7)
- Adjust the temperature to constant 40 °C, 20 °C and 0 °C, Repeat the above experiment.
4.3. Estimation Results without Measurement Noise
4.4. Estimation Results with Measurement Noise
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Nomenclature
nominal capacity | |
polarization capacitor | |
current | |
performance indicator | |
intermediate variable of parameters identification | |
intermediate variable of parameters identification | |
intermediate variable of parameters identification | |
ohmic resistance | |
polarization resistor | |
sampling period | |
open circuit voltage | |
voltage of the RC loop circuit | |
terminal voltage | |
state vector | |
measure vector | |
Greek Letter | |
forgetting factor | |
data vector | |
parameter vector | |
Gaussian white noise | |
Gaussian white noise | |
Acronyms | |
BMS | battery management system |
CC-CV | constant current and constant voltage |
CKF | cubature Kalman filter |
DST | Dynamic Stress Test |
ECM | equivalent circuit model |
EKF | extended Kalman filter |
FFRLS | forgetting factor recursive least squares |
FUDS | Federal Urban Driving Schedule |
GA | genetic algorithms |
NEDC | New European Driving Cycle |
OCV | open circuit voltage |
RELS | recursive extended least squares |
RMSE | root mean square error |
SMO | sliding mode observer |
SOC | state of charge |
SOH | state of health |
UDDS | Urban Dynamometer Driving Schedule |
UKF | unscented Kalman filter |
References
- Han, S.F.; Zhang, B.S.; Sun, X.Y.; Han, S.; Hook, M. China’s energy transition in the power and transport sectors from a substitution perspective. Energies 2017, 10, 600. [Google Scholar] [CrossRef]
- Hoque, M.M.; Hannan, M.A.; Mohamed, A.; Ayob, A. Battery charge equalization controller in electric vehicle applications: A review. Renew. Sustain. Energy. Rev. 2017, 75, 1363–1385. [Google Scholar] [CrossRef]
- Hannan, M.A.; Lipu, M.S.H.; Hussain, A.; Mohamed, A. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations. Renew. Sustain. Energy Rev. 2017, 78, 834–854. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Zhang, W.P.; Li, H.Y.; Zhang, M. Review on state of charge estimation methods for li-ion batteries. Trans. Electr. Electron. Mater. 2017, 18, 136–140. [Google Scholar]
- Cuma, M.U.; Koroglu, T. A comprehensive review on estimation strategies used in hybrid and battery electric vehicles. Renew. Sustain. Energy. Rev. 2015, 42, 517–531. [Google Scholar] [CrossRef]
- Xu, J.; Cao, B.; Cao, J.; Zou, Z. A comparison study of the model based SOC estimation methods for lithium-ion batteries. In Proceedings of the 2013 IEEE Vehicle Power and Propulsion Conference (VPPC), Beijing, China, 15–18 October 2013; pp. 1–5. [Google Scholar]
- Kong, S.N.; Moo, C.S.; Chen, Y.P.; Hsieh, Y.C. Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries. Appl. Energy 2009, 86, 1506–1511. [Google Scholar]
- Lee, S.; Kim, J.; Lee, J.; Cho, B.H. State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge. J. Power Sources 2008, 185, 1367–1373. [Google Scholar] [CrossRef]
- Plett, G.L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 1. Background. J. Power Sources 2004, 134, 252–261. [Google Scholar] [CrossRef]
- Plett, G.L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2. Modeling and identification. J. Power Sources 2004, 134, 262–276. [Google Scholar] [CrossRef]
- Plett, G.L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation. J. Power Sources 2004, 134, 277–292. [Google Scholar] [CrossRef]
- He, Z.; Gao, M.; Wang, C.; Wang, L.; Liu, Y. Adaptive state of charge estimation for li-ion batteries based on an unscented Kalman filter with an enhanced battery model. Energies 2013, 6, 4134–4151. [Google Scholar] [CrossRef]
- Sun, F.C.; Hu, X.S.; Zou, Y.; Li, S.G. Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles. Energy 2011, 36, 3531–3540. [Google Scholar] [CrossRef]
- Xia, B.; Wang, H.; Tian, Y.; Wang, M.; Sun, W.; Xu, Z. State of charge estimation of lithium-ion batteries using an adaptive cubature Kalman filter. Energies 2015, 8, 5916–5936. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, G.; Fang, L. A battery state of charge estimation method using sliding mode observer. In Proceedings of the 2008 7th World Congress on Intelligent Control and Automation, Chongqing, China, 25–27 June 2008; pp. 989–994. [Google Scholar]
- Kim, I.S. The novel state of charge estimation method for lithium battery using sliding mode observer. J. Power Sources 2006, 163, 584–590. [Google Scholar] [CrossRef]
- Yan, J.; Xu, G.; Xu, Y.; Xie, B. Battery state-of-charge estimation based on h∞ filter for hybrid electric vehicle. In Proceedings of the 2008 10th International Conference on Control, Automation, Robotics and Vision, Hanoi, Vietnam, 17–20 December 2008; pp. 464–469. [Google Scholar]
- Zhang, F.; Liu, G.; Fang, L.; Wang, H. Estimation of battery state of charge with h∞ observer: Applied to a robot for inspecting power transmission lines. IEEE Trans. Ind. Electron. 2012, 59, 1086–1095. [Google Scholar] [CrossRef]
- Xia, B.Z.; Sun, Z.; Zhang, R.F.; Lao, Z.Z. A cubature particle filter algorithm to estimate the state of the charge of lithium-ion batteries based on a second-order equivalent circuit model. Energies 2017, 10, 457. [Google Scholar] [CrossRef]
- Plett, G.L. Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 1: Introduction and state estimation. J. Power Sources 2006, 161, 1356–1368. [Google Scholar] [CrossRef]
- Plett, G.L. Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2: Simultaneous state and parameter estimation. J. Power Sources 2006, 161, 1369–1384. [Google Scholar] [CrossRef]
- Song, C.X.; Shao, Y.L.; Song, S.X.; Peng, S.L.; Zhou, F.; Chang, C.; Wang, D. Insulation resistance monitoring algorithm for battery pack in electric vehicle based on extended Kalman filtering. Energies 2017, 10, 714. [Google Scholar] [CrossRef]
- Zhang, Z.L.; Cheng, X.; Lu, Z.Y.; Gu, D.J. SOC estimation of lithium-ion batteries with AEKF and wavelet transform matrix. IEEE Trans. Power Electron. 2017, 32, 7626–7634. [Google Scholar] [CrossRef]
- Kim, I.S. Nonlinear state of charge estimator for hybrid electric vehicle battery. IEEE Trans. Power Electron. 2008, 23, 2027–2034. [Google Scholar]
- Hu, X.S.; Sun, F.C.; Zou, Y.A. Estimation of state of charge of a lithium-ion battery pack for electric vehicles using an adaptive Luenberger observer. Energies 2010, 3, 1586–1603. [Google Scholar] [CrossRef]
- He, H.; Xiong, R.; Fan, J. Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach. Energies 2011, 4, 582–598. [Google Scholar] [CrossRef]
- Xu, J.; Cao, B.; Chen, Z.; Zou, Z. An online state of charge estimation method with reduced prior battery testing information. Int. J. Electr. Power Energy Syst. 2014, 63, 178–184. [Google Scholar] [CrossRef]
- Tian, Y.; Li, D.; Tian, J.; Xia, B. State of charge estimation of lithium-ion batteries using an optimal adaptive gain nonlinear observer. Electrochim. Acta 2017, 225, 225–234. [Google Scholar] [CrossRef]
- Guo, X.; Kang, L.; Yao, Y.; Huang, Z.; Li, W. Joint estimation of the electric vehicle power battery state of charge based on the least squares method and the Kalman filter algorithm. Energies 2016, 9, 100. [Google Scholar] [CrossRef]
- Duong, V.-H.; Bastawrous, H.A.; Lim, K.; See, K.W.; Zhang, P.; Dou, S.X. Online state of charge and model parameters estimation of the lifepo4 battery in electric vehicles using multiple adaptive forgetting factors recursive least-squares. J. Power Sources 2015, 296, 215–224. [Google Scholar] [CrossRef]
- Chaoui, H.; Gualous, H. Online parameter and state estimation of lithium-ion batteries under temperature effects. Electr. Power Syst. Res. 2017, 145, 73–82. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Gong, J. A combination Kalman filter approach for state of charge estimation of lithium-ion battery considering model uncertainty. Energy 2016, 109, 933–946. [Google Scholar] [CrossRef]
- Liu, C.Z.; Liu, W.Q.; Wang, L.Y.; Hu, G.D.; Ma, L.P.; Ren, B.Y. A new method of modeling and state of charge estimation of the battery. J. Power Sources 2016, 320, 1–12. [Google Scholar] [CrossRef]
- Feng, T.; Yang, L.; Zhao, X.; Zhang, H.; Qiang, J. Online identification of lithium-ion battery parameters based on an improved equivalent-circuit model and its implementation on battery state-of-power prediction. J. Power Sources 2015, 281, 192–203. [Google Scholar] [CrossRef]
- Wei, Z.; Lim, T.M.; Skyllas-Kazacos, M.; Wai, N.; Tseng, K.J. Online state of charge and model parameter co-estimation based on a novel multi-timescale estimator for vanadium redox flow battery. Appl. Energy 2016, 172, 169–179. [Google Scholar] [CrossRef]
- Chen, Z.; Mi, C.C.; Fu, Y.; Xu, J.; Gong, X. Online battery state of health estimation based on genetic algorithm for electric and hybrid vehicle applications. J. Power Sources 2013, 240, 184–192. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, W.; Lei, G. A review of li-ion battery equivalent circuit models. Trans. Electr. Electron. Mater. 2016, 17, 311–316. [Google Scholar] [CrossRef]
- Panchal, S.; Dincer, I.; Agelin-Chaab, M.; Fowler, M.; Fraser, R. Uneven temperature and voltage distributions due to rapid discharge rates and different boundary conditions for series-connected lifepo4 batteries. Int. Commun. Heat Mass Transf. 2017, 81, 210–217. [Google Scholar] [CrossRef]
- Panchal, S.; McGrory, J.; Kong, J.; Fraser, R.; Fowler, M.; Dincer, I.; Agelin-Chaab, M. Cycling degradation testing and analysis of a lifepo4 battery at actual conditions. Int. J. Energy Res. 2017, 41, 2565–2575. [Google Scholar] [CrossRef]
- Schweighofer, B.; Raab, K.M.; Brasseur, G. Modeling of high power automotive batteries by the use of an automated test system. IEEE Trans. Instrum. Meas. 2003, 52, 1087–1091. [Google Scholar] [CrossRef]
Temp (°C) SOC | 60 | 40 | 20 | 0 |
---|---|---|---|---|
1 | 0.026253 1 | 0.028764 | 0.040122 | 0.080287 |
0.9 | 0.026908 | 0.02919 | 0.039738 | 0.076331 |
0.8 | 0.026865 | 0.029109 | 0.039517 | 0.075814 |
0.7 | 0.02671 | 0.028947 | 0.039297 | 0.074732 |
0.6 | 0.026557 | 0.028694 | 0.039301 | 0.076104 |
0.5 | 0.026465 | 0.028752 | 0.039856 | 0.081036 |
0.4 | 0.026414 | 0.028857 | 0.040346 | 0.088126 |
0.3 | 0.026634 | 0.029149 | 0.041151 | 0.104209 |
0.2 | 0.026962 | 0.02964 | 0.043149 | 0.128564 |
0.1 | 0.027774 | 0.031417 | 0.058646 | |
0 | 0.033193 | 0.069008 |
Methods | Average Error | Max Error | RMSE | Time (s) |
---|---|---|---|---|
EKF | 0.057 | 0.083 | 0.063 | 0.201 |
FFRLS-EKF | 0.013 | 0.017 | 0.014 | 4.085 |
UKF | 0.056 | 0.083 | 0.062 | 0.390 |
FFRLS-UKF | 0.011 | 0.0144 | 0.011 | 0.557 |
Methods | Average Error | Max Error | RMSE | Time (s) |
---|---|---|---|---|
EKF | 0.057 | 0.083 | 0.063 | 0.151 |
FFRLS-EKF | 0.016 | 0.020 | 0.015 | 4.050 |
UKF | 0.056 | 0.083 | 0.062 | 0.401 |
FFRLS-UKF | 0.014 | 0.018 | 0.015 | 0.539 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, B.; Lao, Z.; Zhang, R.; Tian, Y.; Chen, G.; Sun, Z.; Wang, W.; Sun, W.; Lai, Y.; Wang, M.; et al. Online Parameter Identification and State of Charge Estimation of Lithium-Ion Batteries Based on Forgetting Factor Recursive Least Squares and Nonlinear Kalman Filter. Energies 2018, 11, 3. https://doi.org/10.3390/en11010003
Xia B, Lao Z, Zhang R, Tian Y, Chen G, Sun Z, Wang W, Sun W, Lai Y, Wang M, et al. Online Parameter Identification and State of Charge Estimation of Lithium-Ion Batteries Based on Forgetting Factor Recursive Least Squares and Nonlinear Kalman Filter. Energies. 2018; 11(1):3. https://doi.org/10.3390/en11010003
Chicago/Turabian StyleXia, Bizhong, Zizhou Lao, Ruifeng Zhang, Yong Tian, Guanghao Chen, Zhen Sun, Wei Wang, Wei Sun, Yongzhi Lai, Mingwang Wang, and et al. 2018. "Online Parameter Identification and State of Charge Estimation of Lithium-Ion Batteries Based on Forgetting Factor Recursive Least Squares and Nonlinear Kalman Filter" Energies 11, no. 1: 3. https://doi.org/10.3390/en11010003
APA StyleXia, B., Lao, Z., Zhang, R., Tian, Y., Chen, G., Sun, Z., Wang, W., Sun, W., Lai, Y., Wang, M., & Wang, H. (2018). Online Parameter Identification and State of Charge Estimation of Lithium-Ion Batteries Based on Forgetting Factor Recursive Least Squares and Nonlinear Kalman Filter. Energies, 11(1), 3. https://doi.org/10.3390/en11010003