A Modified Version of the RNG k–ε Turbulence Model for the Scale-Resolving Simulation of Internal Combustion Engines
Abstract
:1. Introduction
2. Zonal-DES Reformulation of the RNG – Model
2.1. Derivation of the Zonal-DES Form
2.2. Constant Calibration
3. Results and Discussion
3.1. Fixed Intake Valve
3.1.1. Mean Velocity and Root-Mean-Square Fluctuations
3.1.2. Flow Structures and Axial Pressure Development
3.2. Reciprocating Piston/Cylinder Assembly
3.2.1. Mean Velocity and RMS Fluctuations
3.2.2. Flow Structures and Cycle-to-Cycle Variability
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
BDC | Bottom dead center |
CCV | Cycle-to-cycle variability |
CFD | Computational fluid dynamics |
CFL | Courant–Friedrichs–Lewy number |
DES | Detached-eddy simulation |
DNS | Direct numerical simulation |
FCD | Filtered central differencing |
ICE | Internal combustion engine |
LDA | Laser Doppler anemometry |
LES | Large-eddy simulation |
LUST | Linear upwind stabilized transport |
RANS | Reynolds-averaged Navier–Stokes equations |
RMS | Root-mean-square |
RNG | Re-normalization group |
TDC | Top dead center |
URANS | Unsteady-RANS |
WALE | Wall-adaptive local eddy viscosity |
ZDES | Zonal-DES |
References
- Spalart, P.R.; Wou, W.H.; Strelets, M.; Allmaras, S.R. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In Advances in DNS/LES; Liu, C., Liu, Z., Eds.; Greyden Press: Columbus, OH, USA, 1997; pp. 137–147. [Google Scholar]
- Tucker, P.G. Computation of unsteady turbomachinery flows: Part 2—LES and hybrids. Prog. Aerosp. Sci. 2011, 47, 546–569. [Google Scholar] [CrossRef]
- Tucker, P.G.; DeBonis, J.R. Aerodynamics, computers and the environment. Philos. Trans. R. Soc. A 2014, 372. [Google Scholar] [CrossRef] [PubMed]
- Buhl, S.; Hartmann, F.; Hasse, C. Identification of large-scale structure fluctuations in IC engines using POD-based conditional averaging. Oil Gas Sci. Technol. 2016, 71, 1. [Google Scholar] [CrossRef]
- Buhl, S.; Dietzsch, F.; Buhl, C.; Hasse, C. Comparative study of turbulence models for scale-resolving simulations of internal combustion engine flows. Comput. Fluids 2017, 156, 66–80. [Google Scholar] [CrossRef]
- Buhl, S.; Hain, D.; Hartmann, F.; Hasse, C. A comparative study of intake and exhaust port modeling strategies for scale-resolving engine simulations. Int. J. Engine Res. 2017, in press. [Google Scholar] [CrossRef]
- Piscaglia, F.; Montorfano, A.; Onorati, A. A scale adaptive filtering technique for turbulence modeling of unsteady flows in IC engines. SAE Int. J. Engines 2015, 8, 426–436. [Google Scholar] [CrossRef]
- Hasse, C.; Sohm, V.; Durst, B. Detached Eddy Simulation of cyclic large scale fluctuations in a simplified engine setup. Int. J. Heat Fluid Flow 2009, 30, 32–43. [Google Scholar] [CrossRef]
- Hasse, C.; Sohm, V.; Durst, B. Numerical investigation of cyclic variations in gasoline engines using a hybrid URANS/LES modeling approach. Comput. Fluids 2010, 39, 25–48. [Google Scholar] [CrossRef]
- Krastev, V.K.; Bella, G.; Campitelli, G. Some Developments in DES Modeling for Engine Flow Simulation; SAE Paper 2015-24-2414; SAE International: Warrendale, PA, USA, 2015. [Google Scholar] [CrossRef]
- Krastev, V.K.; Bella, G. A Zonal Turbulence Modeling Approach for ICE Flow Simulation. SAE Int. J. Engines 2016, 9, 1425–1436. [Google Scholar] [CrossRef]
- Krastev, V.K.; Silvestri, L.; Falcucci, G.; Bella, G. A Zonal-LES Study of Steady and Reciprocating Engine-Like Flows Using a Modified Two-Equation DES Turbulence Model; SAE Paper 2017-24-0030; SAE International: Warrendale, PA, USA, 2017. [Google Scholar]
- Rutland, C.J. Large-eddy simulations for internal combustion engines—A review. Int. J. Engine Res. 2011, 12, 421–451. [Google Scholar] [CrossRef]
- Granet, V.; Vermorel, O.; Lacour, C.; Enaux, B.; Dugué, V.; Poinsot, T. Large-Eddy Simulation and experimental study of cycle-to-cycle variations of stable and unstable operating points in a spark ignition engine. Combust. Flame 2012, 159, 1562–1575. [Google Scholar] [CrossRef] [Green Version]
- Fontanesi, S.; Paltrinieri, S.; D’Adamo, A.; Cantore, G.; Rutland, C. Knock tendency prediction in a high performance engine using LES and tabulated chemistry. SAE Int. J. Fuels Lubr. 2013, 6, 98–118. [Google Scholar] [CrossRef] [Green Version]
- Baumann, M.; Di Mare, F.; Janicka, J. On the validation of Large Eddy Simulation applied to internal combustion engine flows part II: Numerical analysis. Flow Turbul. Combust. 2014, 92, 299–317. [Google Scholar] [CrossRef]
- Fontanesi, S.; Paltrinieri, S.; D’Adamo, A.; Duranti, S. Investigation of Boundary Condition and Field Distribution Effects on the Cycle to Cycle Variability of a Turbocharged GDI Engine Using LES. Oil Gas Sci. Technol. 2014, 69, 107–128. [Google Scholar] [CrossRef]
- Fontanesi, S.; D’Adamo, A.; Rutland, C.J. Large-Eddy Simulation analysis of spark configuration effect on cycle-to-cycle variability of combustion and knock. Int. J. Engine Res. 2015, 16, 403–418. [Google Scholar] [CrossRef] [Green Version]
- Truffin, K.; Angelberger, C.; Richard, S.; Pera, C. Using large-eddy simulation and multivariate analysis to understand the sources of combustion cyclic variability in a spark-ignition engine. Combust. Flame 2015, 162, 4371–4390. [Google Scholar] [CrossRef]
- Spalart, P.R. Detached-Eddy Simulation. Annu. Rev. Fluid Mech. 2009, 41, 181–202. [Google Scholar] [CrossRef]
- Kalitzin, G.; Gould, A.R.B.; Benton, J.J. Application of Two-Equation Turbulence Models in Aircraft Design; AIAA Paper 96-0327; American Institute of Aeronautics and Astronautics, Inc.: Reston, VA, USA, 1996. [Google Scholar] [CrossRef]
- Bella, G.; Krastev, V.K. On the RANS Modeling of Turbulent Airflow Over a Simplified Car Model. In Proceedings of the ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 1, Symposia—Parts A, B, C, and D, Hamamatsu, Japan, 24–29 July 2011; pp. 871–883. [Google Scholar] [CrossRef]
- Krastev, V.K.; Bella, G. On the Steady and Unsteady Turbulence Modeling in Ground Vehicle Aerodynamic Design and Optimization; SAE Paper 2011-24-0163; SAE International: Warrendale, PA, USA, 2011. [Google Scholar] [CrossRef]
- Krastev, V.K.; Bella, G. High reynolds number hybrid RANS/LES modeling with turbulent time scale bounding. AIP Conf. Proc. 2015, 1648, 320003. [Google Scholar] [CrossRef]
- Yakhot, V.; Thangam, S.; Gatski, T.B.; Orszag, S.A.; Speziale, C.G. Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids A 1992, 4, 1510–1520. [Google Scholar] [CrossRef]
- Han, Z.; Reitz, R.D. Turbulence Modeling of Internal Combustion Engines Using RNG k–ε Models. Combust. Sci. Technol. 1995, 106, 267–295. [Google Scholar] [CrossRef]
- El Tahry, S.H. k–ε Equation for Compressible Reciprocating Engine Flows. J. Energy 1983, 7, 345–353. [Google Scholar] [CrossRef]
- Travin, A.; Shur, M.L.; Strelets, M.; Spalart, P.R. Physical and Numerical Upgrades in the Detached-Eddy Simulation of Complex Turbulent Flows. In Advances in LES of Complex Flows; Friedrich, R., Rodi, W., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; pp. 239–254. [Google Scholar]
- Deck, S. Zonal-Detached-Eddy Simulation of the Flow Around a High-Lift Configuration. AIAA J. 2005, 43, 2372–2384. [Google Scholar] [CrossRef]
- Deck, S. Recent improvements in the Zonal Detached Eddy Simulation (ZDES) formulation. Theor. Comput. Fluid Dyn. 2012, 26, 523–550. [Google Scholar] [CrossRef]
- Deck, S.; Gand, F.; Brunet, V.; Ben Khelil, S. High-fidelity simulations of unsteady civil aircraft aerodynamics: Stakes and perspectives. Application of zonal detached eddy simulation. Philos. Trans. R. Soc. A 2014, 372. [Google Scholar] [CrossRef] [PubMed]
- The OpenFOAM Foundation. User Guide. Available online: https://cfd.direct/openfoam/user-guide/ (accessed on 7 November 2017).
- Torres, D.J.; Trujillo, M.F. KIVA-4: An unstructured ALE code for compressible gas flow with sprays. J. Comput. Phys. 2006, 219, 943–975. [Google Scholar] [CrossRef]
- STAR-CD Methodology Version 4.28; Siemens Product Lifecycle Management Inc.: Plano, TX, USA, 2017.
- CONVERGE 2.3 Theory Manual; Convergent Science Inc.: Madison, WI, USA, 2017.
- Comte-Bellot, G.; Corrsin, S. Simple Eulerian time correlation of full and narrow-band velocity signals in grid-generated, ‘isotropic’ turbulence. J. Fluid Mech. 1971, 48, 273–337. [Google Scholar] [CrossRef]
- Knaepen, B.; Debliquy, O.; Carati, D. DNS and LES of a shear-free mixing layer. In Center for Turbulence Research, Annual Research Briefs; Stanford University: Stanford, CA, USA, 2003; pp. 307–318. [Google Scholar]
- Lysenko, D.A.; Ertesvåg, I.S.; Rian, K.E. Large-Eddy Simulation of the Flow Over a Circular Cylinder at Reynolds Number 2 × 104. Flow Turbul. Combust. 2014, 92, 673–698. [Google Scholar] [CrossRef] [Green Version]
- Thobois, L.; Rymer, G.; Soulères, T.; Poinsot, T. Large-Eddy Simulation in IC Engine Geometries; SAE Paper 2004-01-1854; SAE International: Warrendale, PA, USA, 2004. [Google Scholar] [CrossRef]
- Thobois, L.; Rymer, G.; Soulères, T.; Poinsot, T. Large-eddy simulation for the prediction of aerodynamics in IC engines. Int. J. Veh. Des. 2005, 39, 368–382. [Google Scholar] [CrossRef]
- Piscaglia, F.; Montorfano, A.; Onorati, A.; Brusiani, F. Boundary Conditions and SGS Models for LES of Wall-Bounded Separated Flows: An Application to Engine-Like Geometries. Oil Gas Sci. Technol. 2014, 69, 11–27. [Google Scholar] [CrossRef]
- Spalding, D.B. A single formula for the law of the wall. J. Appl. Mech. 1961, 28, 439–446. [Google Scholar] [CrossRef]
- Kalitzin, G.; Medic, G.; Iaccarino, G.; Durbin, P. Near-wall behavior of RANS turbulence models and implications for wall functions. J. Comput. Phys. 2004, 204, 265–291. [Google Scholar] [CrossRef]
- Morse, A.P.; Whitelaw, J.H.; Yanneskis, M. Turbulent flow measurements by laser-doppler anemometry in motored piston-cylinder assemblies. J. Fluids Eng. 1979, 101, 208–216. [Google Scholar] [CrossRef]
- Piscaglia, F.; Montorfano, A.; Onorati, A. Towards the LES simulation of IC engines with parallel topologically changing meshes. SAE Int. J. Engines 2013, 6, 926–940. [Google Scholar] [CrossRef]
- Montorfano, A.; Piscaglia, F.; Schmitt, M.; Wright, Y.M.; Frouzakis, C.E.; Tomboulides, A.G.; Boulouchos, K.; Onorati, A. Comparison of Direct and Large-Eddy Simulations of the turbulent flow in a valve/piston assembly. Flow Turbul. Combust. 2015, 95, 461–480. [Google Scholar] [CrossRef]
- Weller, H. Controlling the computational modes of the arbitrarily structured C grid. Mon. Weather Rev. 2012, 140, 3220–3234. [Google Scholar] [CrossRef]
Simulation Type | Mode | ||
---|---|---|---|
0 | 1 | URANS | A |
1 | 1/0 | DES | B |
0 | 0 | LES | C |
Parameter | Value |
---|---|
Valve stem diameter ( | 16 mm |
Intake duct diameter () | 34 mm |
Cylinder diameter () | 120 mm |
Valve head diameter () | 40 mm |
Intake duct length () | 140 mm |
Cylinder length () | 300 mm |
Valve lift () | 10 mm |
Inlet bulk velocity () | ≈60 m/s |
Inlet bulk Reynolds number () | ≈3 × 104 |
Parameter | Mesh 1 | Mesh 2 |
---|---|---|
Total cell number | 0.98 × 106 | 5.9 × 106 |
Grid type | unstructured | unstructured |
Minimum bulk cell length | 1.1 mm | 0.56 mm |
Maximum bulk cell length | 4.5 mm | 4.5 mm |
Skewness (max) | 3.93 | 4.07 |
Non-orthogonality (max/avg) | 69.2/5.7 deg | 69.3/3.2 deg |
(max) | ≈55 | ≈45 |
Parameter | Value |
---|---|
Valve stem diameter ( | 6 mm |
Intake duct minimum diameter () | 41.6 mm |
Intake duct maximum diameter () | 66 mm |
Cylinder diameter () | 75 mm |
Valve head diameter () | 33.6 mm |
Intake duct length () | 40 mm |
Piston stroke (S) | 60 mm |
Clearance at TDC (c) | 30 mm |
Fluid | Air at standard condition |
Piston turning speed (n) | 200 rpm |
Parameter | Value |
---|---|
Cell number (total/in-cylinder) | 1.81/1.28 × 106 |
Grid type | Block-structured |
Axial cell length (in-cylinder) | 0.2–0.7 mm |
Radial cell length (in-cylinder) | 0.4 mm |
Azimuthal cell length (in-cylinder) | 0.4–2.5 mm |
Skewness (max) | 1.08 |
Non-orthogonality (max/avg) | 39.9/8 deg |
(max) | ≈10 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krastev, V.K.; Silvestri, L.; Falcucci, G. A Modified Version of the RNG k–ε Turbulence Model for the Scale-Resolving Simulation of Internal Combustion Engines. Energies 2017, 10, 2116. https://doi.org/10.3390/en10122116
Krastev VK, Silvestri L, Falcucci G. A Modified Version of the RNG k–ε Turbulence Model for the Scale-Resolving Simulation of Internal Combustion Engines. Energies. 2017; 10(12):2116. https://doi.org/10.3390/en10122116
Chicago/Turabian StyleKrastev, Vesselin Krassimirov, Luca Silvestri, and Giacomo Falcucci. 2017. "A Modified Version of the RNG k–ε Turbulence Model for the Scale-Resolving Simulation of Internal Combustion Engines" Energies 10, no. 12: 2116. https://doi.org/10.3390/en10122116
APA StyleKrastev, V. K., Silvestri, L., & Falcucci, G. (2017). A Modified Version of the RNG k–ε Turbulence Model for the Scale-Resolving Simulation of Internal Combustion Engines. Energies, 10(12), 2116. https://doi.org/10.3390/en10122116