Modelling of Spouted and Spout-Fluid Beds: Key for Their Successful Scale Up
Abstract
:1. Framework of the Experimental Applications of the Technology
- -
- To set the current baseline of modelling in SB through the application of a multiscale analysis methodology, focusing the attention on the most recent works available in literature;
- -
- To identify the critical aspects and remaining uncertainties where efforts still need to be done to achieve a better comprehension of phenomena;
- -
- To suggest potential paths to be explored to foster the development of the technology.
2. Molecular and Particle Scale Modelling
2.1. Kinetic Modelling
2.2. Modelling Based on the Eulerian-Lagrangian Approach
2.2.1. Optimisation of Drag Laws
2.2.2. Definition of Particles
2.2.3. Turbulence Modelling
2.2.4. Study of the Fluidisation Behaviour
2.2.5. Particle Mixing
2.2.6. Heat Transfer and Chemical Reactions
2.2.7. DEM Applied to Auxiliary Devices
3. Lab Scale Modelling
3.1. Modelling Based on Semi-Empirical Correlations and Dimensional Similitude
3.2. Modelling Based on the Eulerian-Eulerian Approach
3.2.1. Optimisation of Drag Laws and Coefficients
3.2.2. Turbulence Modelling
3.2.3. Study of the Fluidisation Behaviour
3.2.4. Particle Mixing
3.2.5. Correlations, Dimensioning and Scale-Up Studies
3.2.6. Heat Transfer and Chemical Reactions
3.2.7. TFM Applied to Auxiliary Devices
4. Plant Scale Modelling
5. New Approaches: Neural Network Modelling
6. Concluding Remarks
- -
- Molecular and particle scale: the introduction of very specific parameters may provide more accurate modelling results but it will also limit the applicability of models to a short range of conditions. Moreover, kinetic schemes are very process specific, sometimes obtained with no physical sense, and their validity at large scale is still controversial. In addition, a further understanding and consensus of the role of drag forces and turbulence phenomena and the influence of shape and size distribution of particles is required for a successful advancement of the technology.
- -
- Reactor scale: semi-empirical correlations for SB design are highly dependent on the geometry of the device and on the characteristics of the feedstock making difficult their applicability in a wide range of situations. Also, the lack of devices in a larger scale does not permit the validation of the existing correlations at scales over lab applications where phenomena as heat transfer or chemical reactions are not likely to follow scale up strategies based on similitude of parameters.
- -
- Process scale: at the moment, very few models have been proposed where kinetic or fluid dynamic properties are taken into account in a large scale framework. Also, the lack of experimental data at large scale difficults the validation of the models.
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations and Symbols
Ar | Archimedes number |
D | diameter of cylindrical column, m |
Db | upper diameter of static bed, m |
Di | diameter of fluid inlet, m |
D0 | diameter of cone base, m |
Ds | spout diameter, m |
dp | particle diameter, m |
es | restitution coefficient |
G | superficial mass flux of fluid, kg/m2s |
g | acceleration of gravity, m/s2 |
H | bed depth, m |
H0 | static bed depth, m |
Hf | fountain height, measured from bed surface, m |
Hm | maximum spoutable bed depth, m |
Rems | Reynolds number based on Di, m/s |
U | superficial velocity of spouting fluid based on D, m/s |
Ui | average fluid velocity at inlet, m/s |
Ums | superficial velocity at minimum spouting, m/s |
Ut | free settling terminal velocity, m/s |
ΔPM | maximum pressure drop across bed, Pa |
ΔPs | spouting pressure drop across bed, Pa |
ε0 | loose packed voidage |
µ | absolute viscosity, Pa·s |
θ | angle of cone, degrees or radian |
sphericity | |
inertial friction angle of particle, degree or radian | |
ρ | density of fluid, kg/m3 |
ρb | bulk density, kg/m3 |
ρp | density of particles, kg/m3 |
References
- Mathur, K.B.; Gishler, P.E. A technique for contacting gases with coarse solid particles. AIChE J. 1955, 1, 157–164. [Google Scholar] [CrossRef]
- Gómez-Barea, A.; Leckner, B. Modeling of biomass gasification in fluidized bed. Prog. Energy Combust. Sci. 2010, 36, 444–509. [Google Scholar] [CrossRef]
- Epstein, N.; Grace, J.R. Spouted and Spout-Fluid Beds; Epstein, N., Grace, J.R., Eds.; Cambridge University Press: Cambridge, UK, 2010; ISBN 9780511777936. [Google Scholar]
- Brunello, G.; Peck, R.E.; Nina, G. Della The drying of barley malt in the spouted bed dryer. Can. J. Chem. Eng. 1974, 52, 201–205. [Google Scholar] [CrossRef]
- Sodha, M.S.; Singh, N.P.; Chandra, R. Drying of paddy in a bed dryer. Dry. Technol. 1988, 6, 251–254. [Google Scholar] [CrossRef]
- San José, M.J.; Álvarez, S.; López, L.B.; García, I. Drying of mixtures of agricultural wastes in a conical spouted bed contactor. Chem. Eng. Trans. 2011, 24, 673–678. [Google Scholar]
- De Souza Nascimento, B.; Freire, F.B.; Freire, J.T. Neuronal and grey modelling of milk drying in spouted bed. Can. J. Chem. Eng. 2013. [Google Scholar] [CrossRef]
- Braga, M.B.; Wang, Z.; Grace, J.R.; Lim, C.J.; Rocha, S.C.S. Slot-Rectangular Spouted Bed: Hydrodynamic Stability and Effects of Operating Conditions on Drying Performance. Dry. Technol. Int. J. 2015, 33, 216–226. [Google Scholar] [CrossRef]
- San Jose, M.J.; Alvarez, S.; Penas, F.J.; Garcia, I. Cycle time in draft tube conical spouted bed dryer for sludge from paper industry. Chem. Eng. Sci. 2013, 100, 413–420. [Google Scholar] [CrossRef]
- De Alsina, O.L.S.; de Almeida, M.M.; da Silva, J.M.; Monteiro, L.F. Drying of Fruits Pieces in Fixed and Spouted Bed; Springer International Publishing: Basel, Switzerland, 2014; pp. 141–159. [Google Scholar]
- Araújo, A.D.A.; Coelho, R.M.D.; Fontes, C.P.M.L.; Silva, A.R.A.; Da Costa, J.M.C.; Rodrigues, S. Production and spouted bed drying of acerola juice containing oligosaccharides. Food Bioprod. Process. 2015, 94, 565–571. [Google Scholar] [CrossRef]
- Sousa, S.L.; De Morais, B.A.; Ribeiro, L.C.; Costa, J.M.C. Stability of cashew apple juice in powder dehydrated in spouted bed. Rev. Bras. Eng. Agríc. Ambient. 2016, 20, 678–682. [Google Scholar] [CrossRef]
- Fakher Dizaji, M.; HamidiSepehr, A.; Chegini, G.; Khazaei, J.; Mansuri, A. Influence of Hot Bed Spray Dryer Parameters on Physical Properties of Peppermint (Mentha piperita L.) Tea Powder. Int. J. Food Eng. 2015, 11, 115–125. [Google Scholar] [CrossRef]
- Wang, S.; Yang, R.; Han, Y.; Gu, Z. Effect of three spouted drying methods on the process and quality characteristics of carrot cubes. In Advanced Engineering and Technology II; CRC Press: Boca Raton, FL, USA, 2015; pp. 301–307. [Google Scholar]
- Chielle, D.P.; Bertuol, D.A.; Meili, L.; Tanabe, E.H.; Dotto, G.L. Spouted bed drying of papaya seeds for oil production. LWT Food Sci. Technol. 2016, 65, 852–860. [Google Scholar] [CrossRef]
- Sahin, S.; Sumnu, G.; Tunaboyu, F. Usage of solar-assisted spouted bed drier in drying of pea. Food Bioprod. Process. 2013, 91, 271–278. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, M.; Mujumdar, A.S.; Jiang, H.; Wang, L. Production of Crispy Granules of Fish: A Comparative Study of Alternate Drying Techniques. Dry. Technol. 2014, 32, 1512–1521. [Google Scholar] [CrossRef]
- Jindarat, W.; Sungsoontorn, S.; Rattanadecho, P. Analysis of Energy Consumption in a Combined Microwave–hot Air Spouted Bed Drying of Biomaterial: Coffee Beans. Exp. Heat Transf. 2014, 28, 107–124. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, M.; Liu, H.; Mujumdar, A.S.; Sun, J.; Zheng, D. Optimization of Potato Cube Drying in a Microwave-Assisted Pulsed Spouted Bed. Dry. Technol. 2014, 32, 960–968. [Google Scholar] [CrossRef]
- Mothibe, K.J.; Wang, C.-Y.; Mujumdar, A.S.; Zhang, M. Microwave-Assisted Pulse-Spouted Vacuum Drying of Apple Cubes. Dry. Technol. 2014, 32, 1762–1768. [Google Scholar] [CrossRef]
- Qi, L.-L.; Zhang, M.; Mujumdar, A.S.; Meng, X.-Y.; Chen, H.-Z. Comparison of Drying Characteristics and Quality of Shiitake Mushrooms (Lentinus edodes) Using Different Drying Methods. Dry. Technol. 2014, 32, 1751–1761. [Google Scholar] [CrossRef]
- Cao, X.; Zhang, M.; Fang, Z.; Mujumdar, A.S.; Jiang, H.; Qian, H.; Ai, H. Drying kinetics and product quality of green soybean under different microwave drying methods. Dry. Technol. Int. J. 2017, 35, 240–248. [Google Scholar] [CrossRef]
- Conceição Filho, R.S.; Barrozo, M.A.S.; Limaverde, J.R.; Ataíde, C.H. The use of a spouted bed in the fertilizer coating of soybean seeds. Dry. Technol. 1998, 16, 2049–2064. [Google Scholar] [CrossRef]
- Mollick, P.K.; Venugopalan, R.; Roy, M.; Rao, P.T.; Sathiyamoorthy, D.; Sengupta, P.; Sharma, G.; Basak, C.B.; Chakravartty, J.K. Deposition of diversely textured buffer pyrolytic carbon layer in TRISO coated particle by controlled manipulation of spouted bed hydrodynamics. Chem. Eng. Sci. 2015, 128, 44–53. [Google Scholar] [CrossRef]
- Şentürk Lüle, S.; Colak, U.; Koksal, M.; Kulah, G. CFD Simulations of Hydrodynamics of Conical Spouted Bed Nuclear Fuel Coaters. Chem. Vap. Depos. 2015, 21, 122–132. [Google Scholar] [CrossRef]
- Mai, X.; Zhang, F.; Lin, J.; Zhu, Z. Hydrodynamics of spouted bed in TRISO particle buffer layer coating process. Nucl. Tech. 2015, 38. [Google Scholar] [CrossRef]
- Chen, W.Y.; Kuo, H.P. Surface coating of group B iron powders in a spouted bed. Procedia Eng. 2015, 102, 1144–1149. [Google Scholar] [CrossRef]
- Plawsky, J.L.; Littman, H. Design and Simulation of a Spout Fluid Bed Coating System; Rensselaer Polytechnic Institute: Troy, NY, USA, 2006; Volume 7. [Google Scholar]
- Da Rosa, G.S.; dos Santos Rocha, S.C. Use of vinasse to produce slow-release coated urea in spouted bed. Can. J. Chem. Eng. 2013, 91, 589–597. [Google Scholar] [CrossRef]
- Ua-amnueychai, W.; Kodama, S.; Tanthapanichakoon, W.; Sekiguchi, H. Preparation of zinc coated PMMA using solid precursor by gliding arc discharge. Chem. Eng. J. 2015, 278, 301–308. [Google Scholar] [CrossRef]
- Bilbao, J.; Olázar, M.; Romero, A.; Arandes, J.M. Design and operation of a jet spouted bed reactor with continuous catalyst feed in the benzyl alcohol polymerization. Ind. Eng. Chem. Res. 1987, 26, 1297–1304. [Google Scholar] [CrossRef]
- Kechagiopoulos, P.N.; Voutetakis, S.S.; Vasalos, I.A. Sustainable hydrogen production via reforming of ethylene glycol using a novel spouted bed reactor. Catal. Today 2007, 127, 246–255. [Google Scholar] [CrossRef]
- Wolff, M.F.H.; Salikov, V.; Antonyuk, S.; Heinrich, S.; Schneider, G.A. Novel, highly-filled ceramic-polymer composites synthesized by a spouted bed spray granulation process. Compos. Sci. Technol. 2014, 90, 154–159. [Google Scholar] [CrossRef]
- Eichner, E.; Salikov, V.; Bassen, P.; Heinrich, S.; Schneider, G.A. Using dilute spouting for fabrication of highly filled metal-polymer composite materials. Powder Technol. 2016. [Google Scholar] [CrossRef]
- Handge, U.A.; Wolff, M.F.H.; Abetz, V.; Heinrich, S. Viscoelastic and dielectric properties of composites of poly(vinyl butyral) and alumina particles with a high filling degree. Polymer 2016, 82, 337–348. [Google Scholar] [CrossRef]
- Xu, X.Y.; Lin, H.; Chen, X.; Zhao, B. Study on the Treatment of Nickel-Containing Wastewater by Spouted Bed Particulate Electro-Deposition. Adv. Mater. Res. 2013, 864–867, 1462–1465. [Google Scholar] [CrossRef]
- El-Naas, M.H.; Alhaija, M.A.; Al-Zuhair, S. Evaluation of a three-step process for the treatment of petroleum refinery wastewater. J. Environ. Chem. Eng. 2014, 2, 56–62. [Google Scholar] [CrossRef]
- Baghban, E.; Mehrabani-Zeinabad, A.; Moheb, A. The effects of operational parameters on the electrochemical removal of cadmium ion from dilute aqueous solutions. Hydrometallurgy 2014, 149, 97–105. [Google Scholar] [CrossRef]
- Liu, D.; Roberts, E.P.L.; Martin, A.D.; Holmes, S.M.; Brown, N.W.; Campen, A.K.; de las Heras, N. Electrochemical regeneration of a graphite adsorbent loaded with Acid Violet 17 in a spouted bed reactor. Chem. Eng. J. 2016, 304, 1–9. [Google Scholar] [CrossRef]
- Darwish, A.S.; Zewail, T.M.; Yousef, N.S.; El-Tawail, Y.A. Investigation of the performance of a batch air spouting bed in conducting ion exchange reactions involving heavy metal removal. J. Taiwan Inst. Chem. Eng. 2015, 47, 171–176. [Google Scholar] [CrossRef]
- Watkinson, A.P.; Lisboa, A.C.L. Gasification, pyrolysis, and combustion. In Spouted and Spout-Fluid Beds; Epstein, N., Grace, J.R., Eds.; Cambridge University Press: Cambridge, UK, 2010; pp. 250–268. [Google Scholar]
- Amutio, M.; Lopez, G.; Artetxe, M.; Elordi, G.; Olazar, M.; Bilbao, J. Influence of temperature on biomass pyrolysis in a conical spouted bed reactor. Resour. Conserv. Recycl. 2012, 59, 23–31. [Google Scholar] [CrossRef]
- Du, S.; Sun, Y.; Gamliel, D.P.; Valla, J.A.; Bollas, G.M. Catalytic pyrolysis of miscanthus giganteus in a spouted bed reactor. Bioresour. Technol. 2014, 169, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Amutio, M.; Lopez, G.; Alvarez, J.; Olazar, M.; Bilbao, J. Fast pyrolysis of eucalyptus waste in a conical spouted bed reactor. Bioresour. Technol. 2015, 194, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Arregi, A.; Barbarias, I.; Alvarez, J.; Erkiaga, A.; Artetxe, M.; Amutio, M.; Olazar, M. Hydrogen Production from Biomass Pyrolysis and In-line Catalytic Steam Reforming. Chem. Eng. Trans. 2015, 43, 547–552. [Google Scholar]
- Arregi, A.; Amutio, M.; Lopez, G.; Artetxe, M.; Alvarez, J.; Bilbao, J.; Olazar, M. Hydrogen-rich gas production by continuous pyrolysis and in-line catalytic reforming of pine wood waste and HDPE mixtures. Energy Convers. Manag. 2017, 136, 192–201. [Google Scholar] [CrossRef]
- Makibar, J.; Fernandez-Akarregi, A.R.; Amutio, M.; Lopez, G.; Olazar, M. Performance of a conical spouted bed pilot plant for bio-oil production by poplar flash pyrolysis. Fuel Process. Technol. 2015, 137, 283–289. [Google Scholar] [CrossRef]
- Aguado, R.; Olazar, M.; Gaisan, B.; Prieto, R.; Bilbao, J. Kinetic Study of Polyolefins Pyrolysis in a Conical Spouted Bed Reactor. Ind. Eng. Chem. Res. 2002, 41, 4559–4566. [Google Scholar] [CrossRef]
- Aguado, R.; Prieto, R.; José, M.J.S.; Alvarez, S.; Olazar, M.; Bilbao, J. Defluidization modelling of pyrolysis of plastics in a conical spouted bed reactor. Chem. Eng. Process. Process Intensif. 2005, 44, 231–235. [Google Scholar] [CrossRef]
- Olazar, M.; Aguado, R.; San José, M.J.; Alvarez, S.; Bilbao, J. Minimum spouting velocity for the pyrolysis of scrap tyres with sand in conical spouted beds. Powder Technol. 2006, 165, 128–132. [Google Scholar] [CrossRef]
- Lopez, G.; Amutio, M.; Elordi, G.; Artetxe, M.; Altzibar, H.; Olazar, M. A conical spouted bed reactor for the valorisation of waste tires. In Proceedings of the 13th International Conference on Fluidisation—New Paradigm in Fluidisation Engineering, Gyeong-ju, Korea, 16–21 May 2010; pp. 1–8. [Google Scholar]
- Alvarez, J.; Lopez, G.; Amutio, M.; Bilbao, J.; Olazar, M. Preparation of adsorbents from sewage sludge pyrolytic char by carbon dioxide activation. Process Saf. Environ. Prot. 2016, 103, 76–86. [Google Scholar] [CrossRef]
- Alvarez, J.; Amutio, M.; Lopez, G.; Barbarias, I.; Bilbao, J.; Olazar, M. Sewage sludge valorization by flash pyrolysis in a conical spouted bed reactor. Chem. Eng. J. 2015, 273, 173–183. [Google Scholar] [CrossRef]
- Alvarez, J.; Amutio, M.; Lopez, G.; Bilbao, J.; Olazar, M. Fast co-pyrolysis of sewage sludge and lignocellulosic biomass in a conical spouted bed reactor. Fuel 2015, 159, 810–818. [Google Scholar] [CrossRef]
- Alvarez, J.; Lopez, G.; Amutio, M.; Artetxe, M.; Barbarias, I.; Arregi, A.; Bilbao, J.; Olazar, M. Characterization of the bio-oil obtained by fast pyrolysis of sewage sludge in a conical spouted bed reactor. Fuel Process. Technol. 2016, 149, 169–175. [Google Scholar] [CrossRef]
- Rasul, M.G. Spouted bed combustion of wood charcoal: Performance comparison of three different designs. Fuel 2001, 80, 2189–2191. [Google Scholar] [CrossRef]
- Albina, D.O. Emissions from multiple-spouted and spout-fluid fluidized beds using rice husks as fuel. Renew. Energy 2006, 31, 2152–2163. [Google Scholar] [CrossRef]
- San José, M.J.; Alvarez, S.; García, I.; Peñas, F.J. A novel conical combustor for thermal exploitation of vineyard pruning wastes. Fuel 2013, 110, 178–184. [Google Scholar] [CrossRef]
- San José, M.J.; Alvarez, S.; Peñas, F.J.; García, I. Thermal exploitation of fruit tree pruning wastes in a novel conical spouted bed combustor. Chem. Eng. J. 2014, 238, 227–233. [Google Scholar] [CrossRef]
- San José, M.J.; Alvarez, S.; García, I.; Peñas, F.J. Conical spouted bed combustor for clean valorization of sludge wastes from paper industry to generate energy. Chem. Eng. Res. Des. 2014, 92, 672–678. [Google Scholar] [CrossRef]
- Konduri, R.K.; Altwicker, E.R.; Morgan, M.H. Design and scale-up of a spouted-bed combustor. Chem. Eng. Sci. 1999, 54, 185–204. [Google Scholar] [CrossRef]
- Tsuji, T.; Uemaki, O. Coal gasification in a jet-spouted bed. Can. J. Chem. Eng. 1994, 72, 504–510. [Google Scholar] [CrossRef]
- Uemaki, O.; Tsuji, T. Gasification of a Sub-Bituminous Coal in a Two-Stage Jet Spouted Bed Reactor. In Fluidization; Engineering Foundation: New York, NY, USA, 1986; pp. 497–504. [Google Scholar]
- Bernocco, D.; Bosio, B.; Arato, E. Feasibility study of a spouted bed gasification plant. Chem. Eng. Res. Des. 2013, 91, 843–855. [Google Scholar] [CrossRef]
- Erkiaga, A.; Lopez, G.; Amutio, M.; Bilbao, J.; Olazar, M. Steam gasification of biomass in a conical spouted bed reactor with olivine and γ-alumina as primary catalysts. Fuel Process. Technol. 2013, 116, 292–299. [Google Scholar] [CrossRef]
- Erkiaga, A.; Lopez, G.; Amutio, M.; Bilbao, J.; Olazar, M. Influence of operating conditions on the steam gasification of biomass in a conical spouted bed reactor. Chem. Eng. J. 2014, 237, 259–267. [Google Scholar] [CrossRef]
- Bove, D.; Moliner, C.; Curti, M.; Rovero, G.; Baratieri, M.; Bosio, B.; Arato, E.; Garbarino, G.; Marchelli, F. Experimental studies on the gasification of the residues from prune of apple trees with a spouted bed reactor. In Proceedings of the European Biomass Conference and Exhibition, Amsterdam, The Netherlands, 6–9 June 2016; Volume 2016, pp. 858–862. [Google Scholar]
- Adegoroye, A.; Paterson, N.; Li, X.; Morgan, T.; Herod, A.A.; Dugwell, D.R.; Kandiyoti, R. The characterisation of tars produced during the gasification of sewage sludge in a spouted bed reactor. Fuel 2004, 83, 1949–1960. [Google Scholar] [CrossRef]
- Yasin, S.; Curti, M.; Rovero, G.; Behary, N.; Perwuelz, A.; Giraud, S.; Migliavacca, G.; Chen, G.; Guan, J. An Alternative for the End-of-life Phase of Flame Retardant Textile Products: Degradation of Flame Retardant and Preliminary Settings of Energy Valorization by Gasification. BioResources 2017, 12, 5196–5211. [Google Scholar] [CrossRef]
- Sangtongam, K.; Gmurczyk, J.; Gupta, A.K. Parameters Influencing Clean Syngas Production from Biomass, Solid Wastes, and Coal during Steam Gasification. In Proceedings of the International Symposium on EcoTopia Science, Nagoya, Japan, 23–25 November 2007; pp. 617–622. [Google Scholar]
- Beltramo, C.; Rovero, G.; Cavaglià, G. Hydrodynamic and thermal experimentation on square-based spouted beds for polymer upgrading and unit scale-up. Can. J. Chem. Eng. 2009, 87, 394–402. [Google Scholar] [CrossRef]
- Makibar, J.; Fernandez-Akarregi, A.R.; Díaz, L.; Lopez, G.; Olazar, M. Pilot scale conical spouted bed pyrolysis reactor: Draft tube selection and hydrodynamic performance. Powder Technol. 2012, 219, 49–58. [Google Scholar] [CrossRef]
- Paterson, N.; Reed, G.P.; Dugwell, D.R.; Kandiyoti, R. Gasification Tests With Sewage Sludge and Coal/Sewage Sludge Mixtures in a Pilot Scale, Air Blown, Spouted Bed Gasifier. In Turbo Expo 2002; ASME: Singapore, 2002; Volume 1, pp. 197–202. [Google Scholar]
- Madhiyanon, T.; Soponronnarit, S.; Tia, W. Industrial-scale prototype of continuous spouted bed paddy dryer. Dry. Technol. 2001, 19, 207–216. [Google Scholar] [CrossRef]
- Van der Hoef, M.A.; Ye, M.; van Sint Annaland, M.; Andrews, A.T.; Sundaresan, S.; Kuipers, J.A.M. Multiscale modeling of gas-fluidized beds. Adv. Chem. Eng. 2006, 31, 65–149. [Google Scholar]
- Kechagiopoulos, P.N.; Voutetakis, S.S.; Lemonidou, A.A. Cold flow experimental study and computer simulations of a compact spouted bed reactor. Chem. Eng. Process. Process Intensif. 2014, 82, 137–149. [Google Scholar] [CrossRef]
- Spreutels, L.; Haut, B.; Chaouki, J.; Bertrand, F.; Legros, R. Conical spouted bed drying of Baker’s yeast: Experimentation and multi-modeling. Food Res. Int. 2014, 62, 137–150. [Google Scholar] [CrossRef]
- Moliner, C.; Aguilar, K.; Bosio, B.; Arato, E.; Ribes, A. Thermo-oxidative characterisation of the residues from persimmon harvest for its use in energy recovery processes. Fuel Process. Technol. 2016, 152, 421–429. [Google Scholar] [CrossRef]
- Moliner, C.; Bosio, B.; Arato, E.; Ribes, A. Thermal and thermo-oxidative characterisation of rice straw for its use in energy valorisation processes. Fuel 2016, 180, 71–79. [Google Scholar] [CrossRef]
- Artetxe, M.; Lopez, G.; Amutio, M.; Barbarias, I.; Arregi, A.; Aguado, R.; Bilbao, J.; Olazar, M. Styrene recovery from polystyrene by flash pyrolysis in a conical spouted bed reactor. Waste Manag. 2015, 45, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Atutxa, A.; Aguado, R.; Gayubo, A.G.; Olazar, M.; Bilbao, J. Kinetic Description of the Catalytic Pyrolysis of Biomass in a Conical Spouted Bed Reactor. Energy Fuels 2005, 19, 765–774. [Google Scholar] [CrossRef]
- Lopez, G.; Alvarez, J.; Amutio, M.; Arregi, A.; Bilbao, J.; Olazar, M. Assessment of steam gasification kinetics of the char from lignocellulosic biomass in a conical spouted bed reactor. Energy 2016, 107, 493–501. [Google Scholar] [CrossRef]
- Niksiar, A.; Faramarzi, A.H.; Sohrabi, M. Kinetic study of polyethylene terephthalate (PET) pyrolysis in a spouted bed reactor. AIChE J. 2015, 61, 1900–1911. [Google Scholar] [CrossRef]
- Olazar, M.; Lopez, G.; Arabiourrutia, M.; Elordi, G.; Aguado, R.; Bilbao, J. Kinetic modelling of tyre pyrolysis in a conical spouted bed reactor. J. Anal. Appl. Pyrolysis 2008, 81, 127–132. [Google Scholar] [CrossRef]
- Amutio, M.; Lopez, G.; Aguado, R.; Artetxe, M.; Bilbao, J.; Olazar, M. Kinetic study of lignocellulosic biomass oxidative pyrolysis. Fuel 2012, 95, 305–311. [Google Scholar] [CrossRef]
- Artetxe, M.; Lopez, G.; Amutio, M.; Bilbao, J.; Olazar, M. Kinetic modelling of the cracking of HDPE pyrolysis volatiles on a HZSM-5 zeolite based catalyst. Chem. Eng. Sci. 2014, 116, 635–644. [Google Scholar] [CrossRef]
- Cundall, P.A.; Strack, O.D.L. A discrete numerical model for granular assemblies. Géotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Liu, D.; Bu, C.; Chen, X. Development and test of CFD–DEM model for complex geometry: A coupling algorithm for Fluent and DEM. Comput. Chem. Eng. 2013, 58, 260–268. [Google Scholar] [CrossRef]
- Stroh, A.; Alobaid, F.; Hasenzahl, M.T.; Hilz, J.; Ströhle, J.; Epple, B. Comparison of three different CFD methods for dense fluidized beds and validation by a cold flow experiment. Particuology 2016, 29, 34–47. [Google Scholar] [CrossRef]
- Alobaid, F. An offset-method for Euler-Lagrange approach. Chem. Eng. Sci. 2015, 138, 173–193. [Google Scholar] [CrossRef]
- Golshan, S.; Esgandari, B.; Zarghami, R. CFD-DEM and TFM Simulations of Spouted Bed. Chem. Eng. Trans. 2017, 57, 1249–1254. [Google Scholar] [CrossRef]
- Almohammed, N.; Alobaid, F.; Breuer, M.; Epple, B. A comparative study on the influence of the gas flow rate on the hydrodynamics of a gas–solid spouted fluidized bed using Euler–Euler and Euler–Lagrange/DEM models. Powder Technol. 2014, 264, 343–364. [Google Scholar] [CrossRef]
- Pan, H.; Chen, X.-Z.; Liang, X.-F.; Zhu, L.-T.; Luo, Z.-H. CFD simulations of gas–liquid–solid flow in fluidized bed reactors—A review. Powder Technol. 2016, 299, 235–258. [Google Scholar] [CrossRef]
- Tsuji, T.; Yabumoto, K.; Tanaka, T. Spontaneous structures in three-dimensional bubbling gas-fluidized bed by parallel DEM–CFD coupling simulation. Powder Technol. 2008, 184, 132–140. [Google Scholar] [CrossRef]
- Golshan, S.; Zarghami, R.; Mostoufi, N. Hydrodynamics of slot-rectangular spouted beds: Process intensification. Chem. Eng. Res. Des. 2017, 121, 315–328. [Google Scholar] [CrossRef]
- Zhang, H.; Li, S. DEM simulation of wet granular-fluid flows in spouted beds: Numerical studies and experimental verifications. Powder Technol. 2017, 318, 337–349. [Google Scholar] [CrossRef]
- Saidi, M.; Wang, Z.; Grace, J.R.; Lim, C.J. Numerical and experimental investigation of hydrodynamic characteristics of a slot-rectangular spouted bed. Can. J. Chem. Eng. 2016, 94, 332–339. [Google Scholar] [CrossRef]
- Zhang, H.; Li, S. Study on Drag Force Coefficients in Modeling Granular Flows in a Slot-Rectangular Spouted Bed. In Proceedings of the 7th International Conference on Discrete Element Methods, Dalian, China, 1–4 August 2016; pp. 697–707. [Google Scholar]
- Qiu, K.; Hu, C.; Yang, S.; Luo, K.; Zhang, K.; Fan, J. Computational evaluation of depth effect on the hydrodynamics of slot-rectangular spouted bed. Powder Technol. 2016, 287, 51–60. [Google Scholar] [CrossRef]
- Wen, Y.; Liu, M.; Liu, B.; Shao, Y. Comparative Study on the Characterization Method of Particle Mixing Index Using DEM Method. Procedia Eng. 2015, 102, 1630–1642. [Google Scholar] [CrossRef]
- Liu, M.; Wen, Y.; Liu, R.; Liu, B.; Shao, Y. Investigation of fluidization behavior of high density particle in spouted bed using CFD-DEM coupling method. Powder Technol. 2015, 280, 72–82. [Google Scholar] [CrossRef]
- Ren, B.; Zhong, W.; Jiang, X.; Jin, B.; Yuan, Z. Numerical simulation of spouting of cylindroid particles in a spouted bed. Can. J. Chem. Eng. 2014, 92, 928–934. [Google Scholar] [CrossRef]
- Yang, S.; Luo, K.; Fang, M.; Fan, J. Discrete element simulation of the hydrodynamics in a 3D spouted bed: Influence of tube configuration. Powder Technol. 2013, 243, 85–95. [Google Scholar] [CrossRef]
- Luo, K.; Yang, S.; Zhang, K.; Fang, M.; Fan, J. Particle dispersion and circulation patterns in a 3D spouted bed with or without draft tube. Ind. Eng. Chem. Res. 2013, 52, 9620–9631. [Google Scholar] [CrossRef]
- Yang, S.; Luo, K.; Fang, M.; Zhang, K.; Fan, J. Three-Dimensional Modeling of Gas−Solid Motion in a Slot-Rectangular Spouted Bed with the Parallel Framework of the Computational Fluid Dynamics−Discrete Element Method Coupling Approach. Ind. Eng. Chem. Res. 2013, 52, 13222–13231. [Google Scholar] [CrossRef]
- Marchelli, F.; Bove, D.; Moliner, C.; Bosio, B.; Arato, E. Discrete element method for the prediction of the onset velocity in a spouted bed. Powder Technol. 2017, 321, 119–131. [Google Scholar] [CrossRef]
- Ren, B.; Zhong, W.; Chen, Y.; Chen, X.; Jin, B.; Yuan, Z.; Lu, Y. CFD-DEM simulation of spouting of corn-shaped particles. Particuology 2012, 10, 562–572. [Google Scholar] [CrossRef]
- Ren, B.; Zhong, W.; Jin, B.; Shao, Y.; Yuan, Z. Numerical simulation on the mixing behavior of corn-shaped particles in a spouted bed. Powder Technol. 2013, 234, 58–66. [Google Scholar] [CrossRef]
- Xie, J.; Zhong, W.; Jin, B. LES-Lagrangian modelling on gasification of combustible solid waste in a spouted bed. Can. J. Chem. Eng. 2014, 92, 1325–1333. [Google Scholar] [CrossRef]
- Yang, S.; Luo, K.; Fang, M.; Fan, J. CFD-DEM simulation of the spout-annulus interaction in a 3D spouted bed with a conical base. Can. J. Chem. Eng. 2014, 92, 1130–1138. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, L.; Bai, L.; Shi, W.; Li, W.; Wang, C.; Agarwal, R. Experimental study and transient CFD/DEM simulation in a fluidized bed based on different drag models. RSC Adv. 2017, 7, 12764–12774. [Google Scholar] [CrossRef]
- Li, L.; Li, B.; Liu, Z. Modeling of spout-fluidized beds and investigation of drag closures using OpenFOAM. Powder Technol. 2017, 305, 364–376. [Google Scholar] [CrossRef]
- Yang, S.; Sun, Y.; Zhang, L.; Zhao, Y.; Chew, J.W. Numerical investigation on the effect of draft plates on spouting stability and gas–solid characteristics in a spout-fluid bed. Chem. Eng. Sci. 2016, 148, 108–125. [Google Scholar] [CrossRef]
- Banerjee, S.; Agarwal, R.K. Characterization of Scaling Laws in Computational Fluid Dynamics Simulations of Spouted Fluidized Beds for Chemical Looping Combustion. Energy Fuels 2016, 30, 8638–8647. [Google Scholar] [CrossRef]
- Yang, S.; Sun, Y.; Wang, J.; Cahyadi, A.; Chew, J.W. Influence of operating parameters and flow regime on solid dispersion behavior in a gas-solid spout-fluid bed. Chem. Eng. Sci. 2016, 142, 112–125. [Google Scholar] [CrossRef]
- Xu, H.; Zhong, W.; Yuan, Z.; Yu, A. CFD-DEM study on cohesive particles in a spouted bed. Powder Technol. 2016. [Google Scholar] [CrossRef]
- Sun, L.; Xu, W.; Lu, H.; Liu, G.; Zhang, Q.; Tang, Q.; Zhang, T. Simulated configurational temperature of particles and a model of constitutive relations of rapid-intermediate-dense granular flow based on generalized granular temperature. Int. J. Multiph. Flow 2015, 77, 1–18. [Google Scholar] [CrossRef]
- Karimi, H.; Dehkordi, A.M. Prediction of equilibrium mixing state in binary particle spouted beds: Effects of solids density and diameter differences, gas velocity, and bed aspect ratio. Adv. Powder Technol. 2015, 26, 1371–1382. [Google Scholar] [CrossRef]
- Wang, C.; Zhong, Z.; Wang, X.; Alting, S.A. Numerical simulation of gas-solid heat transfer behaviour in rectangular spouted bed. Can. J. Chem. Eng. 2015, 93, 2077–2083. [Google Scholar] [CrossRef]
- Saidi, M.; Basirat Tabrizi, H.; Grace, J.R.; Lim, C.J. Hydrodynamic investigation of gas-solid flow in rectangular spout-fluid bed using CFD-DEM modeling. Powder Technol. 2015, 284, 355–364. [Google Scholar] [CrossRef]
- Sutkar, V.S.; Deen, N.G.; Salikov, V.; Antonyuk, S.; Heinrich, S.; Kuipers, J.A.M. Experimental and numerical investigations of a pseudo-2D spout fluidized bed with draft plates. Powder Technol. 2015, 270, 537–547. [Google Scholar] [CrossRef]
- Alobaid, F. A particle–grid method for Euler–Lagrange approach. Powder Technol. 2015, 286, 342–360. [Google Scholar] [CrossRef]
- Wang, C.; Zhong, Z.; Wang, X.; Alting, S.A. Simulation of gas-solid flow in rectangular spouted bed by coupling CFD-DEM and LES. Can. J. Chem. Eng. 2014, 92, 1488–1494. [Google Scholar] [CrossRef]
- Deb, S.; Tafti, D. Investigation of flat bottomed spouted bed with multiple jets using DEM-CFD framework. Powder Technol. 2014, 254, 387–402. [Google Scholar] [CrossRef]
- Fan, J.; Xiao, G. Numerical Simulation of the Gas-Solid Flow by DEM-CFD Approach with Application to a Spouted Bed. Sens. Transducers 2014, 164, 218–226. [Google Scholar]
- Alobaid, F.; Epple, B. Improvement, validation and application of CFD/DEM model to dense gas-solid flow in a fluidized bed. Particuology 2013, 11, 514–526. [Google Scholar] [CrossRef]
- Sutkar, V.S.; Deen, N.G.; Mohan, B.; Salikov, V.; Antonyuk, S.; Heinrich, S.; Kuipers, J.A.M. Numerical investigations of a pseudo-2D spout fluidized bed with draft plates using a scaled discrete particle model. Chem. Eng. Sci. 2013, 104, 790–807. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Siegmann, E.; Prieling, D.; Glasser, B.J.; Khinast, J.G. An investigation of the hydrodynamic similarity of single-spout fluidized beds using CFD-DEM simulations. Adv. Powder Technol. 2017, 28, 2465–2481. [Google Scholar] [CrossRef]
- Pietsch, S.; Heinrich, S.; Karpinski, K.; Müller, M.; Schönherr, M.; Kleine Jäger, F. CFD-DEM modeling of a three-dimensional prismatic spouted bed. Powder Technol. 2016. [Google Scholar] [CrossRef]
- Wang, Z.; Saidi, M.; Lim, C.J.; Grace, J.R.; Basirat Tabrizi, H.; Chen, Z.; Li, Y. Comparison of DEM simulation and experiments in a dual-column slot-rectangular spouted bed with a suspended partition. Chem. Eng. J. 2016, 290, 63–73. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Z.; Wang, Q.; Qin, H.; Xu, X. Simulation of oil shale semi-coke particle cold transportation in a spouted bed using CPFD method. Powder Technol. 2016, 301, 360–368. [Google Scholar] [CrossRef]
- Banerjee, S.; Agarwal, R. Transient reacting flow simulation of spouted fluidized bed for coal-direct chemical looping combustion with different Fe-based oxygen carriers. Appl. Energy 2015, 160, 552–560. [Google Scholar] [CrossRef]
- Salikov, V.; Antonyuk, S.; Heinrich, S.; Sutkar, V.S.; Deen, N.G.; Kuipers, J.A.M. Characterization and CFD-DEM modelling of a prismatic spouted bed. Powder Technol. 2015, 270, 622–636. [Google Scholar] [CrossRef]
- Banerjee, S.; Agarwal, R.K. Transient Reacting Flow Simulation of Spouted Fluidized Bed for Coal-Direct Chemical Looping Combustion. J. Therm. Sci. Eng. Appl. 2015, 7, 21016. [Google Scholar] [CrossRef]
- Yang, S.; Luo, K.; Zhang, K.; Qiu, K.; Fan, J. Numerical study of a lab-scale double slot-rectangular spouted bed with the parallel CFD-DEM coupling approach. Powder Technol. 2015, 272, 85–99. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, L.; Agarwal, R. Transient Simulations of Spouted Fluidized Bed for Coal-Direct Chemical Looping Combustion. Energy Fuels 2014, 28, 1548–1560. [Google Scholar] [CrossRef]
- Yang, S.; Luo, K.; Fang, M.; Zhang, K.; Fan, J. Parallel CFD-DEM modeling of the hydrodynamics in a lab-scale double slot-rectangular spouted bed with a partition plate. Chem. Eng. J. 2014, 236, 158–170. [Google Scholar] [CrossRef]
- Fries, L.; Antonyuk, S.; Heinrich, S.; Dopfer, D.; Palzer, S. Collision dynamics in fluidised bed granulators: A DEM-CFD study. Chem. Eng. Sci. 2013, 86, 108–123. [Google Scholar] [CrossRef]
- Bao, X.; Du, W.; Xu, J. Computational fluid dynamic modeling of spouted beds. In Spouted and Spout-Fluid Beds; Epstein, N., Grace, J.R., Eds.; Cambridge University Press: Cambridge, UK, 2010; pp. 57–81. [Google Scholar]
- Bao, X.; Du, W.; Xu, J. An overview on the recent advances in computational fluid dynamics simulation of spouted beds. Can. J. Chem. Eng. 2013, 91, 1822–1836. [Google Scholar] [CrossRef]
- Rong, L.W.; Zhan, J.M. Improved DEM-CFD model and validation: A conical-base spouted bed simulation study. J. Hydrodyn. 2010, 22, 351–359. [Google Scholar] [CrossRef]
- Zhu, R.R.; Zhu, W.B.; Xing, L.C.; Sun, Q.Q. DEM simulation on particle mixing in dry and wet particles spouted bed. Powder Technol. 2011, 210, 73–81. [Google Scholar] [CrossRef]
- Neto, J.L.V.; Duarte, C.R.; Murata, V.V.; Barrozo, M.A.S. Effect of a draft tube on the fluid dynamics of a spouted bed: Experimental and CFD studies. Dry. Technol. 2008, 26, 299–307. [Google Scholar] [CrossRef]
- Shäfer, J.; Dippel, S.; Wolf, D.E. Force Schemes in Simulations of Granular Materials. J. Phys. I 1996, 6, 5–20. [Google Scholar] [CrossRef]
- Di Renzo, A.; Di Maio, F.P. Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes. Chem. Eng. Sci. 2004, 59, 525–541. [Google Scholar] [CrossRef]
- Tsuji, Y.; Tanaka, T.; Ishida, T. Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol. 1992, 71, 239–250. [Google Scholar] [CrossRef]
- Tsuji, Y.; Kawaguchi, T.; Tanaka, T. Discrete particle simulation of two-dimensional fluidized bed. Powder Technol. 1993, 77, 79–87. [Google Scholar] [CrossRef]
- Kobayashi, T.; Tanaka, T.; Shimada, N.; Kawaguchi, T. DEM-CFD analysis of fluidization behavior of Geldart Group A particles using a dynamic adhesion force model. Powder Technol. 2013, 248, 143–152. [Google Scholar] [CrossRef]
- Alizadeh, E.; Bertrand, F.; Chaouki, J. Comparison of DEM results and Lagrangian experimental data for the flow and mixing of granules in a rotating drum. AIChE J. 2014, 60, 60–75. [Google Scholar] [CrossRef]
- Campbell, C.S.; Brennen, C.E. Computer simulation of granular shear flows. J. Fluid Mech. 1985, 151, 167. [Google Scholar] [CrossRef]
- Snider, D.M. An Incompressible Three-Dimensional Multiphase Particle-in-Cell Model for Dense Particle Flows. J. Comput. Phys. 2001, 170, 523–549. [Google Scholar] [CrossRef]
- Hoomans, B.P.B. Granular Dynamics of Gas-Solid Two-Phase Flow; Twente University: Enschede, The Netherlands, 2000. [Google Scholar]
- Zhu, H.P.; Zhou, Z.Y.; Yang, R.Y.; Yu, A.B. Discrete particle simulation of particulate systems: A review of major applications and findings. Chem. Eng. Sci. 2008, 63, 5728–5770. [Google Scholar] [CrossRef]
- Gidaspow, D.; Bezburuah, R.; Ding, J. Hydrodynamics of Circulating Fluidized Beds, Kinetic Theory Approach. In Proceedings of the 7th Engineering Foundation Conference on Fluidization, Gold Coast, Australia, 3–8 May 1992; pp. 75–82. [Google Scholar]
- Chen, F.; Qiang, H.; Gao, W. Coupling of smoothed particle hydrodynamics and finite volume method for two-dimensional spouted beds. Comput. Chem. Eng. 2015, 77, 135–146. [Google Scholar] [CrossRef]
- Koch, D.L.; Hill, R.G. Inertial Effects in Suspensions and Porous-Media Flows. Annu. Rev. Fluid Mech. 2001, 33, 619–647. [Google Scholar] [CrossRef]
- Beetstra, R.; Van Der Hoef, M.A.; Kuipers, J.A.M. Drag force of intermediate reynolds number flow past mono- and bidisperse arrays of spheres. AIChE J. 2007, 53, 489–501. [Google Scholar] [CrossRef]
- Syamlal, M.; O’Brien, T. Computer simulation of bubbles in a fluidized bed. AIChE Symp. Ser. 1989, 85, 22–31. [Google Scholar]
- Wen, C.Y.; Yu, Y.H. Mechanics of Fluidization. Chem. Eng. Prog. Symp. Ser. 1966, 162, 100–111. [Google Scholar]
- Hill, R.G.; Koch, D.L.; Ladd, A.J.C. Moderate-Reynolds-number flows in ordered and random arrays of spheres. J. Fluid Mech. 2001, 448. [Google Scholar] [CrossRef]
- Dahl, S.R.; Hrenya, C.M. Size segregation in gas–solid fluidized beds with continuous size distributions. Chem. Eng. Sci. 2005, 60, 6658–6673. [Google Scholar] [CrossRef]
- Di Felice, R. The voidage function for fluid-particle interaction systems. Int. J. Multiph. Flow 1994, 20, 153–159. [Google Scholar] [CrossRef]
- Haider, A.; Levenspiel, O. Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technol. 1989, 58, 63–70. [Google Scholar] [CrossRef]
- Pepiot, P.; Desjardins, O. Numerical analysis of the dynamics of two- and three-dimensional fluidized bed reactors using an Euler–Lagrange approach. Powder Technol. 2012, 220, 104–121. [Google Scholar] [CrossRef]
- Ren, B.; Zhong, W.; Jin, B.; Lu, Y.; Chen, X.; Xiao, R. Study on the Drag of a Cylinder-Shaped Particle in Steady Upward Gas Flow. Ind. Eng. Chem. Res. 2011, 50, 7593–7600. [Google Scholar] [CrossRef]
- Van Der Hoef, M.A.; Beetstra, R.; Kuipers, J.A.M. Lattice-Boltzmann simulations of low-Reynolds-number flow past mono- and bidisperse arrays of spheres: Results for the permeability and drag force. J. Fluid Mech. 2005, 528, 233–254. [Google Scholar] [CrossRef]
- Ren, B.; Shao, Y.; Zhong, W.; Jin, B.; Yuan, Z.; Lu, Y. Investigation of mixing behaviors in a spouted bed with different density particles using discrete element method. Powder Technol. 2012, 222, 85–94. [Google Scholar] [CrossRef]
- Lu, L.; Konan, A.; Benyahia, S. Influence of grid resolution, parcel size and drag models on bubbling fluidized bed simulation. Chem. Eng. J. 2017. [Google Scholar] [CrossRef]
- Shi, Z.; Wang, W.; Li, J. A bubble-based EMMS model for gas–solid bubbling fluidization. Chem. Eng. Sci. 2011, 66, 5541–5555. [Google Scholar] [CrossRef]
- Glicksman, L.R.; Hyre, M.; Woloshun, K. Simplified scaling relationships for fluidized beds. Powder Technol. 1993, 77, 177–199. [Google Scholar] [CrossRef]
- Link, J.M.; Godlieb, W.; Tripp, P.; Deen, N.G.; Heinrich, S.; Kuipers, J.A.M.; Schönherr, M.; Peglow, M. Comparison of fibre optical measurements and discrete element simulations for the study of granulation in a spout fluidized bed. Powder Technol. 2009, 189, 202–217. [Google Scholar] [CrossRef]
- Zhong, W.; Yu, A.; Liu, X.; Tong, Z.; Zhang, H. DEM/CFD-DEM Modelling of Non-spherical Particulate Systems: Theoretical Developments and Applications. Powder Technol. 2016, 302, 108–152. [Google Scholar] [CrossRef]
- Berger, K.J.; Hrenya, C.M. Challenges of DEM: II. Wide particle size distributions. Powder Technol. 2014, 264, 627–633. [Google Scholar] [CrossRef]
- Elghobashi, S. On predicting particle-laden turbulent flows. Appl. Sci. Res. 1994, 52, 309–329. [Google Scholar] [CrossRef]
- Zhao, X.L.; Li, S.Q.; Liu, G.Q.; Yao, Q.; Marshall, J.S. DEM simulation of the particle dynamics in two-dimensional spouted beds. Powder Technol. 2008, 184, 205–213. [Google Scholar] [CrossRef]
- Vreman, A.W. An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications. Phys. Fluids 2004, 16, 3670–3681. [Google Scholar] [CrossRef]
- Saidi, M.; Tabrizi, H.B. Numerical Investigation of Particles in a Gas-Solid Spouted Fluidized Bed. In Proceedings of the Particle Technology Forum 2014—Core Programming Area at the 2014 AIChE Annual Meeting, Atlanta, GA, USA, 16–21 November 2014. [Google Scholar]
- Gao, J.; Lan, X.; Fan, Y.; Chang, J.; Wang, G.; Lu, C.; Xu, C. Hydrodynamics of gas–solid fluidized bed of disparately sized binary particles. Chem. Eng. Sci. 2009, 64, 4302–4316. [Google Scholar] [CrossRef]
- Moliner Estopiñán, C.E. Valorisation of Agricultural Residues. Ph.D. Thesis, Universitat Politècnica de València, Valencia, Spain, 2016. [Google Scholar]
- Mikami, T.; Kamiya, H.; Horio, M. Numerical simulation of cohesive powder behavior in a fluidized bed. Chem. Eng. Sci. 1998, 53, 1927–1940. [Google Scholar] [CrossRef]
- Zhong, W.; Yu, A.; Zhou, G.; Xie, J.; Zhang, H. CFD simulation of dense particulate reaction system: Approaches, recent advances and applications. Chem. Eng. Sci. 2016, 140, 16–43. [Google Scholar] [CrossRef]
- Finnie, I. Erosion of surfaces by solid particles. Wear 1960, 3, 87–103. [Google Scholar] [CrossRef]
- Fane, A.G.; Mitchell, R.A. Minimum spouting velocity of scaled-up beds. Can. J. Chem. Eng. 1984, 62, 437–439. [Google Scholar] [CrossRef]
- Yang, L.; Lim, J.C.; Epstein, N. Aerodynamic aspects of spouted beds at temperatures up to 580 °C. J. Serbian Chem. Soc. 1996, 61, 253–266. [Google Scholar]
- Olazar, M.; San José, M.J.; Aguayo, A.T.; Arandes, J.M.; Bilbao, J. Hydrodynamics of nearly flat base spouted beds. Chem. Eng. J. Biochem. Eng. J. 1994, 55, 27–37. [Google Scholar] [CrossRef]
- Anabtawi, M.Z.; Uysal, B.Z.; Jumah, R.Y. Flow characteristics in a rectangular spout-fluid bed. Powder Technol. 1992, 69, 205–211. [Google Scholar] [CrossRef]
- Saldarriaga, J.F.; Aguado, R.; Altzibar, H.; Atxutegi, A.; Bilbao, J.; Olazar, M. Minimum spouting velocity for conical spouted beds of vegetable waste biomasses. J. Taiwan Inst. Chem. Eng. 2016, 60, 509–519. [Google Scholar] [CrossRef]
- Manurung, F. Studies in the Spouted Bed Technique with Particular Reference to Low Temperature Coal Carbonization. Ph.D. Thesis, University of New South Wales, Kensington, Australia, 1964. [Google Scholar]
- Kmie, A. Hydrodynamics of Flows and Heat Transfer in Spouted Beds. Chem. Eng. J. 1980, 19, 189–200. [Google Scholar] [CrossRef]
- Olazar, M.; San José, M.J.; Aguayo, A.T.; Arandes, J.M.; Bilbao, J. Pressure drop in conical spouted beds. Chem. Eng. J. 1993, 51, 53–60. [Google Scholar] [CrossRef]
- Markowski, A.; Kaminski, W. Hydrodynamic characteristics of jet-spouted beds. Can. J. Chem. Eng. 1983, 61, 377–381. [Google Scholar] [CrossRef]
- San José, M.J.; Olazar, M.; Alvarez, S.; Morales, A.; Bilbao, J. Spout and Fountain Geometry in Conical Spouted Beds Consisting of Solids of Varying Density. Ind. Eng. Chem. Res. 2006, 44, 193–200. [Google Scholar]
- Olazar, M.; Lopez, G.; Altzibar, H.; Barona, A.; Bilbao, J. One-dimensional modelling of conical spouted beds. Chem. Eng. Process. Process Intensif. 2009, 48, 1264–1269. [Google Scholar] [CrossRef]
- Niksiar, A.; Sohrabi, M. A novel hydrodynamic model for conical spouted beds based on streamtube modeling approach. Powder Technol. 2014, 267, 371–380. [Google Scholar] [CrossRef]
- Bridgwater, G.S.; McNab, J. Spouted beds—Estimation of spouting pressure drop and the particle size for deepest bed. In Proceedings of the European Congress on Particle Technology, Nuremberg, Germany, 24–25 May 1977; p. 17. [Google Scholar]
- Lefroy, G.A.; Davidson, J. The mechanics of spouted beds. Trans. Inst. Chem. Eng. 1969, 47, 120–128. [Google Scholar]
- He, Y.-L.; Lim, C.J.; Grace, J.R. Scale-up studies of spouted beds. Chem. Eng. Sci. 1997, 52, 329–339. [Google Scholar] [CrossRef]
- Glicksman, L.R. Scaling relationships for fluidized beds. Chem. Eng. Sci. 1984, 39, 1373–1379. [Google Scholar] [CrossRef]
- Huilin, L.; Yurong, H.; Wentie, L.; Ding, J.; Gidaspow, D.; Bouillard, J. Computer simulations of gas-solid flow in spouted beds using kinetic-frictional stress model of granular flow. Chem. Eng. Sci. 2004, 59, 865–878. [Google Scholar] [CrossRef]
- Ali, N.; Al-Juwaya, T.; Al-Dahhan, M. An advanced evaluation of spouted beds scale-up for coating TRISO nuclear fuel particles using Radioactive Particle Tracking (RPT). Exp. Therm. Fluid Sci. 2017, 80, 90–104. [Google Scholar] [CrossRef]
- Aradhya, S.; Taofeeq, H.; Al-dahhan, M. Evaluation of the Dimensionless Groups Based Scale-Up of Gas-Solid Spouted Beds. Int. J. Multiph. Flow 2017. [Google Scholar] [CrossRef]
- Setarehshenas, N.; Hosseini, S.H.; Esfahany, M.N.; Ahmadi, G. Three-dimensional CFD study of conical spouted beds containing heavy particles: Design parameters. Korean J. Chem. Eng. 2017, 34, 1541–1553. [Google Scholar] [CrossRef]
- Reza, M.O.; Laugwitz, A.; Nikrityuk, P. Cylindrical-conical spouted bed dynamics: Laminar and turbulent flow predictions. Can. J. Chem. Eng. 2016. [Google Scholar] [CrossRef]
- Du, W.; Zhang, J.; Bao, S.; Xu, J.; Zhang, L. Numerical investigation of particle mixing and segregation in spouted beds with binary mixtures of particles. Powder Technol. 2016, 301, 1159–1171. [Google Scholar] [CrossRef]
- Setarehshenas, N.; Hosseini, S.H.H.; Esfahany, M.N.; Ahmadi, G. Impacts of solid-phase wall boundary condition on CFD simulation of conical spouted beds containing heavy zirconia particles. J. Taiwan Inst. Chem. Eng. 2016, 64, 146–156. [Google Scholar] [CrossRef]
- Melo, J.L.Z.; Bacelos, M.S.; Pereira, F.A.R.; Lira, T.S.; Gidaspow, D. CFD modeling of conical spouted beds for processing LDPE/Al composite. Chem. Eng. Process. Process Intensif. 2016, 108, 93–108. [Google Scholar] [CrossRef]
- Jin, G.; Zhang, M.; Fang, Z.; Cui, Z.; Song, C. Numerical Investigation on Effect of Food Particle Mass on Spout Elevation of a Gas–Particle Spout Fluidized Bed in a Microwave–Vacuum Dryer. Dry. Technol. 2015, 33, 591–604. [Google Scholar] [CrossRef]
- Santos, K.G.; Francisquetti, M.C.C.; Malagoni, R.A.; Barrozo, M.A.S. Fluid Dynamic Behavior in a Spouted Bed with Binary Mixtures Differing in Size. Dry. Technol. 2015, 1–12. [Google Scholar] [CrossRef]
- Bove, D.; Moliner, C.; Bosio, B.; Arato, E.; Curti, M.; Rovero, G. CFD Simulations of a Square-Based Spouted Bed Reactor and Validation with Experimental Tests Using Rice Straw as Feedstock. Chem. Eng. Trans. 2015, 43, 1363–1368. [Google Scholar] [CrossRef]
- Wang, S.; Shao, B.; Liu, R.; Zhao, J.; Liu, Y.; Liu, Y.; Yang, S. Comparison of numerical simulations and experiments in conical gas-solid spouted bed. Chin. J. Chem. Eng. 2015, 23, 1579–1586. [Google Scholar] [CrossRef]
- Du, Y.; Yang, Q.; Berrouk, A.S.; Yang, C.; Al Shoaibi, A.S. Equivalent Reactor Network Model for Simulating the Air Gasification of Polyethylene in a Conical Spouted Bed Gasifier. Energy Fuels 2014, 28, 6830–6840. [Google Scholar] [CrossRef]
- Liu, M.; Liu, B.; Shao, Y.; Wang, J. Optimization design of the coating furnace by 3-d simulation of spouted bed dynamics in the coater. Nucl. Eng. Des. 2014, 271, 68–72. [Google Scholar] [CrossRef]
- Chaiwang, P.; Gidaspow, D.; Chalermsinsuwan, B.; Piumsomboon, P. CFD design of a sorber for CO2 capture with 75 and 375 mircron particles. Chem. Eng. Sci. 2014, 105, 32–45. [Google Scholar] [CrossRef]
- Jin, G.; Zhang, M.; Fang, Z.; Cui, Z.; Song, C. Numerical study on spout elevation of a gas-particle spout fluidized bed in microwave-vacuum dryer. J. Food Eng. 2014, 143, 8–16. [Google Scholar] [CrossRef]
- Jiang, X.; Zhong, W.; Liu, X.; Jin, B. Study on gas-solid flow behaviors in a spouted bed at elevated pressure: Numerical simulation aspect. Powder Technol. 2014, 264, 22–30. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, L.; Wang, C.; Liu, Y.; Gao, J.; Liu, Y.; Cheng, Q. Numerical simulation of gas–solid flow with two fluid model in a spouted-fluid bed. Particuology 2014, 14, 109–116. [Google Scholar] [CrossRef]
- Riera, J.; Zeppieri, S.; Derjani-Bayeh, S. Hydrodynamic study of a multiphase spouted column. Fuel 2014, 138, 183–192. [Google Scholar] [CrossRef]
- Hosseini, S.H.; Ahmadi, G.; Olazar, M. CFD study of particle velocity profiles inside a draft tube in a cylindrical spouted bed with conical base. J. Taiwan Inst. Chem. Eng. 2014, 45, 2140–2149. [Google Scholar] [CrossRef]
- Liu, P.; Hrenya, C.M. Challenges of DEM: I. Competing bottlenecks in parallelization of gas-solid flows. Powder Technol. 2014, 264, 620–626. [Google Scholar] [CrossRef]
- Hosseini, S.H.; Fattahi, M.; Ahmadi, G. Hydrodynamics studies of a pseudo 2D rectangular spouted bed by CFD. Powder Technol. 2015, 279, 301–309. [Google Scholar] [CrossRef]
- Tabatabaei, S.A.; Mahinpey, N.; Esmaili, E.; Lim, C.J. CFD simulation of flow regime maps in a slot-rectangular spouted bed. Can. J. Chem. Eng. 2013, 91. [Google Scholar] [CrossRef]
- Du, W.; Xu, J.; Wei, W.; Bao, X. Computational fluid dynamics validation and comparison analysis of scale-up relationships of spouted beds. Can. J. Chem. Eng. 2013, 91. [Google Scholar] [CrossRef]
- Bie, W.B.; Srzednicki, G.; Fletcher, D.F. Hydrodynamics modeling of corn drying in a triangular spouted bed dryer. Acta Hortic. 2013, 169–178. [Google Scholar] [CrossRef]
- Liu, X.; Shao, Y.; Zhong, W.; Grace, J.R.; Epstein, N.; Jin, B. Prediction of minimum spouting velocity by CFD-TFM: Approach development. Can. J. Chem. Eng. 2013, 91, 1800–1808. [Google Scholar] [CrossRef]
- Zhong, W.; Liu, X.; Grace, J.R.; Epstein, N.; Ren, B.; Jin, B. Prediction of minimum spouting velocity of spouted bed by CFD-TFM: Scale-up. Can. J. Chem. Eng. 2013, 91. [Google Scholar] [CrossRef]
- Moradi, S.; Yeganeh, A.; Salimi, M. CFD-modeling of effects of draft tubes on operating condition in spouted beds. Appl. Math. Model. 2013, 37, 1851–1859. [Google Scholar] [CrossRef]
- Hosseini, S.H.; Ahmadi, G.; Olazar, M. CFD simulation of cylindrical spouted beds by the kinetic theory of granular flow. Powder Technol. 2013, 246, 303–316. [Google Scholar] [CrossRef]
- Fattahi, M.; Hosseini, S.H.; Ahmadi, G. CFD simulation of transient gas to particle heat transfer for fluidized and spouted regimes. Appl. Therm. Eng. 2016, 105, 385–396. [Google Scholar] [CrossRef]
- Hosseini, S.H.; Fattahi, M.; Ahmadi, G. CFD Study of hydrodynamic and heat transfer in a 2D spouted bed: Assessment of radial distribution function. J. Taiwan Inst. Chem. Eng. 2016, 58, 107–116. [Google Scholar] [CrossRef]
- Wang, X.; Jin, B.; Wang, Y.; Hu, C. Three-dimensional multi-phase simulation of the mixing and segregation of binary particle mixtures in a two-jet spout fluidized bed. Particuology 2015, 22, 185–193. [Google Scholar] [CrossRef]
- Chen, D.; Liu, X.; Zhong, W.; Shao, Y.; Jin, B. Interactions of spout jets in a multiple-spouted bed. Can. J. Chem. Eng. 2014, 92, 1150–1159. [Google Scholar] [CrossRef]
- Liu, X.; Zhong, W.; Yu, A.; Xu, B.; Lu, J. Mixing behaviors in an industrial-scale spout-fluid mixer by 3D CFD-TFM. Powder Technol. 2016. [Google Scholar] [CrossRef]
- Gidaspow, D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions; Academic Press: Cambridge, MA, USA, 1994; ISBN 9780080512266. [Google Scholar]
- Béttega, R.; Corrêa, R.G.; Freire, J.T. Use of Fluid Dynamic Simulation to Improve the Design of Spouted Beds. In Applied Computational Fluid Dynamics; InTech: Rijeka, Croatia, 2012; pp. 321–344. ISBN 978-953-51-0271-7. [Google Scholar]
- Béttega, R.; Corrêa, R.G.; Freire, J.T. Scale-up study of spouted beds using computational fluid dynamics. Can. J. Chem. Eng. 2009, 87, 193–203. [Google Scholar] [CrossRef]
- Liu, X.; Zhong, W.; Shao, Y.; Ren, B.; Jin, B. Evaluation on the effect of conical geometry on flow behaviours in spouted beds. Can. J. Chem. Eng. 2014, 92, 768–774. [Google Scholar] [CrossRef]
- Prieur Du Plessis, J. Analytical quantification of coefficients in the Ergun equation for fluid friction in a packed bed. Transp. Porous Media 1994, 16, 189–207. [Google Scholar] [CrossRef]
- Esmaili, E.; Mahinpey, N. Adjustment of drag coefficient correlations in three dimensional CFD simulation of gas–solid bubbling fluidized bed. Adv. Eng. Softw. 2011, 42, 375–386. [Google Scholar] [CrossRef]
- Launder, B.E.; Spalding, D.B. The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 1974, 3, 269–289. [Google Scholar] [CrossRef]
- Wilcox, D.C. Reassessment of the scale-determining equation for advanced turbulence models. AIAA J. 1988, 26, 1299–1310. [Google Scholar] [CrossRef]
- Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef]
- Gunn, D.J. Transfer of heat or mass to particles in fixed and fluidised beds. Int. J. Heat Mass Transf. 1978, 21, 467–476. [Google Scholar] [CrossRef]
- Lun, C.K.K.; Savage, S.B. The effects of an impact velocity dependent coefficient of restitution on stresses developed by sheared granular materials. Acta Mech. 1986, 63, 15–44. [Google Scholar] [CrossRef]
- Ma, D.; Ahmadi, G. An equation of state for dense rigid sphere gases. J. Chem. Phys. 1986, 84, 3449–3450. [Google Scholar] [CrossRef]
- Iddir, H.; Arastoopour, H. Modeling of multitype particle flow using the kinetic theory approach. AIChE J. 2005, 51, 1620–1632. [Google Scholar] [CrossRef]
- Chen, Z.; Lim, C.J.; Grace, J.R. Stability of slot-rectangular spouted beds with multiple slots. Can. J. Chem. Eng. 2013, 91. [Google Scholar] [CrossRef]
- Moliner, C.; Bove, D.; Bosio, B.; Ribes, A.; Arato, E. Feasibility studies on the energy valorisation of agricultural residues using Aspen Plus©. In Proceedings of the 23rd European Biomass Conference and Exhibition, Vienna, Austria, 1–4 June 2015; Volume 2015, pp. 803–809. [Google Scholar]
- Jarungthammachote, S.; Dutta, A. Equilibrium modeling of gasification: Gibbs free energy minimization approach and its application to spouted bed and spout-fluid bed gasifiers. Energy Convers. Manag. 2008, 49, 1345–1356. [Google Scholar] [CrossRef]
- Moliner, C.; Bove, D.; Bosio, B.; Ribes Greus, A.; Arato, E. Simulation activities for the pseudo-equilibrium modelling of the gasification of agricultural residues. In Proceedings of the European Biomass Conference and Exhibition, Amsterdam, The Netherlands, 6–9 June 2016; Volume 2016, pp. 934–940. [Google Scholar]
- Kersten, S.; Palz, W.; Spitzer, J.; Prins, W.; Van der Drift, A.; Maniatis, K.; Kwant, K.; Helm, P.; Grassi, A. Interpretation of biomass gasification by “quasi” equilibrium models. In Proceedings of the 12th European Conference on Biomass for Energy, Industry and Climate Protection, Amsterdam, The Netherlands, 17–21 June 2002. [Google Scholar]
- Olazar, M.; Lopez, G.; Altzibar, H.; Bilbao, J. Modelling batch drying of sand in a draft-tube conical spouted bed. Chem. Eng. Res. Des. 2011, 89, 2054–2062. [Google Scholar] [CrossRef]
- Saldarriaga, J.F.; Aguado, R.; Atxutegi, A.; Grace, J.; Bilbao, J.; Olazar, M. Correlation for Calculating Heat Transfer Coefficient in Conical Spouted Beds. Ind. Eng. Chem. Res. 2016, 55, 9524–9532. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, M.; Zhong, W.; Wang, X.; Xiao, R. Simulation of Coal Gasification in a Pressurized Spout-Fluid Bed Gasifier. Can. J. Chem. Eng. 2009, 87, 169–176. [Google Scholar] [CrossRef]
- Zhong, W.; Chen, X.; Grace, J.R.; Epstein, N.; Jin, B. Intelligent prediction of minimum spouting velocity of spouted bed by back propagation neural network. Powder Technol. 2013, 247, 197–203. [Google Scholar] [CrossRef]
- Salam, P.A.; Bhattacharya, S.C. A comparative hydrodynamic study of two types of spouted bed reactor designs. Chem. Eng. Sci. 2006, 61, 1946–1957. [Google Scholar] [CrossRef]
- Virgen-Navarro, L.; Herrera-López, E.J.; Corona-González, R.I.; Arriola-Guevara, E.; Guatemala-Morales, G.M. Neuro-fuzzy model based on digital images for the monitoring of coffee bean color during roasting in a spouted bed. Expert Syst. Appl. 2016, 54, 162–169. [Google Scholar] [CrossRef]
- Nakamura Alves Vieira, G.; Bentes Freire, F.; Freire, J.T. Control of the Moisture Content of Milk Powder Produced in a Spouted Bed Dryer Using a Grey-Box Inferential Controller. Dry. Technol. 2015, 33, 1920–1928. [Google Scholar] [CrossRef]
- Klipstein, D.H.; Robinson, S. Vision 2020: Reaction Engineering Roadmap; American Institute of Chemical Engineers: New York, NY, USA, 2001. [Google Scholar]
Geometry | Number of Occurrences | References |
---|---|---|
Spouted | 17 | [91,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110] |
Spout-Fluid | 21 | [89,90,92,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128] |
Other | 10 | [129,130,131,132,133,134,135,136,137,138] |
Program | Number of Occurrences | References |
---|---|---|
FLUENT | 7 | [89,106,111,117,134,136,141] |
MFIX | 6 | [96,98,99,105,135,137] |
OpenFOAM | 4 | [97,112,120,130] |
EDEM | 4 | [100,101,133,138] |
FORTRAN code | 4 | [119,125,130,142] |
BARRACUDA | 3 | [89,90,131] |
Self-made code | 3 | [107,108,118] |
DEMEST | 2 | [90,92] |
LIGGGHTS | 2 | [91,129] |
GenIDLEST | 1 | [124] |
XPS | 1 | [128] |
Drag Law | Number of Occurrences | References |
---|---|---|
Gidaspow [154] | 18 | [91,96,97,103,104,111,113,116,117,118,119,120,124,125,130,138,141,155] |
Koch and Hill [156] | 7 | [90,95,99,105,129,135,137] |
Beetstra [157] | 3 | [121,127,129] |
Syamlal-O’Brien [158] | 3 | [89,134,136] |
Wen-Yu [159] | 3 | [90,109,131] |
Hill et al. [160] | 2 | [92,115] |
Dahl and Hrenya [161] | 1 | [98] |
Di Felice [162] | 1 | [101] |
Haider and Levenspiel [163] | 1 | [106] |
Pepiot and Desjardins [164] | 1 | [128] |
Ren et al. [165] | 1 | [102] |
Van der Hoef et al. [166] | 1 | [112] |
Model | Number of Occurrences | References |
---|---|---|
k-ε | 22 | [90,92,95,96,98,99,101,103,104,105,106,107,108,110,111,116,118,122,126,129,134,135] |
None or not specified | 18 | [89,91,97,100,102,112,113,114,115,120,124,125,128,130,131,132,136,138] |
Sub-grid Scale (SSG) | 3 | [117,121,127] |
Large Eddy Simulation (LES) | 2 | [109,123] |
RNG k-ε | 1 | [133] |
Authors | Correlation |
---|---|
Mathur and Gishler (1955) [1] | |
Fane and Mitchell (1984) [169] | for D > 0.4 m |
Olazar et al. (1994) [185] | |
Li et al. (1996) [184] | based on high temperature data |
Anabtawi et al. (1992) [186] | for square column |
Authors | Correlation | Geometry |
---|---|---|
Manurung (1964) [188] | Cylindrical | |
Olazar et al. (1994) [185] | Cylindrical | |
Kmiec (1980) [189] | Conical | |
Olazar et al. (1993) [190] | Conical | |
Markowski and Kaminski (1983) [191] | Conical | |
Olazar et al. (1993) [190] | Conical |
Geometry | Number of Occurrences | References |
---|---|---|
Spouted | 28 | [25,91,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227] |
Spout-Fluid | 7 | [89,90,92,228,229,230,231] |
Other | 1 | [232] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moliner, C.; Marchelli, F.; Bosio, B.; Arato, E. Modelling of Spouted and Spout-Fluid Beds: Key for Their Successful Scale Up. Energies 2017, 10, 1729. https://doi.org/10.3390/en10111729
Moliner C, Marchelli F, Bosio B, Arato E. Modelling of Spouted and Spout-Fluid Beds: Key for Their Successful Scale Up. Energies. 2017; 10(11):1729. https://doi.org/10.3390/en10111729
Chicago/Turabian StyleMoliner, Cristina, Filippo Marchelli, Barbara Bosio, and Elisabetta Arato. 2017. "Modelling of Spouted and Spout-Fluid Beds: Key for Their Successful Scale Up" Energies 10, no. 11: 1729. https://doi.org/10.3390/en10111729
APA StyleMoliner, C., Marchelli, F., Bosio, B., & Arato, E. (2017). Modelling of Spouted and Spout-Fluid Beds: Key for Their Successful Scale Up. Energies, 10(11), 1729. https://doi.org/10.3390/en10111729