The Future Is Coming: Artificial Intelligence in the Treatment of Infertility Could Improve Assisted Reproduction Outcomes—The Value of Regulatory Frameworks
Abstract
:1. Introduction
Artificial Intelligence in Reproductive Medicine
2. Materials and Methods
3. Results
3.1. Artificial Intelligence and Female Infertility
3.2. Embryo Transfer and Artificial Intelligence
3.3. Artificial Intelligence and Male Infertility
3.4. Artificial Intelligence and Idiopathic Infertility
3.5. Legal and Ethical Quandaries in AI-Based Healthcare
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization (WHO). International Classification of Diseases; 11th Revision (ICD-11); WHO: Geneva, Switzerland, 2018. [Google Scholar]
- Carson, S.A.; Kallen, A.N. Diagnosis and Management of Infertility. JAMA 2021, 326, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Baskaran, S.; Parekh, N.; Cho, C.-L.; Henkel, R.; Vij, S.; Arafa, M.; Selvam, M.K.P.; Shah, R. Male infertility. Lancet 2020, 397, 319–333. [Google Scholar] [CrossRef] [PubMed]
- Infertility Workup for the Women’s Health Specialist. Obstet. Gynecol. 2019, 133, 1294–1295. [CrossRef] [PubMed]
- Franik, S.; Le, Q.-K.; Kremer, J.A.; Kiesel, L.; Farquhar, C. Aromatase inhibitors (letrozole) for ovulation induction in infertile women with polycystic ovary syndrome. Cochrane Database Syst. Rev. 2022, 9, CD010287. [Google Scholar] [CrossRef]
- Gadalla, M.A.; Norman, R.J.; Tay, C.T.; Hiam, D.S.; Melder, A.; Pundir, J.; Thangaratinam, S.; Teede, H.J.; Mol, B.W.J.; Moran, L.J. Medical and Surgical Treatment of Reproductive Outcomes in Polycystic Ovary Syndrome: An Overview of Systematic Reviews. Int. J. Fertil. Steril. 2019, 13, 257–270. [Google Scholar] [CrossRef] [PubMed]
- Medenica, S.; Garalejic, E.; Arsic, B.; Medjo, B.; Jovic, D.B.; Abazovic, D.; Vukovic, R.; Zarkovic, M. Follicular fluid thyroid autoantibodies, thyrotropin, free thyroxine levels and assisted reproductive technology outcome. PLoS ONE 2018, 13, e0206652. [Google Scholar] [CrossRef] [PubMed]
- Goudakou, M.; Kalogeraki, A.; Matalliotakis, I.; Panagiotidis, Y.; Gullo, G.; Prapas, Y. Cryptic sperm defects may be the cause for total fertilization failure in oocyte donor cycles. Reprod. Biomed. Online 2012, 24, 148–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poppe, K.; Bisschop, P.; Fugazzola, L.; Minziori, G.; Unuane, D.; Weghofer, A. 2021 European Thyroid Association Guideline on Thyroid Disorders prior to and during Assisted Reproduction. Eur. Thyroid. J. 2020, 9, 281–295. [Google Scholar] [CrossRef] [PubMed]
- Medenica, S.; Abazovic, D.; Ljubić, A.; Vukovic, J.; Begovic, A.; Cucinella, G.; Zaami, S.; Gullo, G. The Role of Cell and Gene Therapies in the Treatment of Infertility in Patients with Thyroid Autoimmunity. Int. J. Endocrinol. 2022, 2022, 4842316. [Google Scholar] [CrossRef] [PubMed]
- Prapas, Y.; Petousis, S.; Panagiotidis, Y.; Gullo, G.; Kasapi, L.; Papadeothodorou, A.; Prapas, N. Injection of embryo culture supernatant to the endometrial cavity does not affect outcomes in IVF/ICSI or oocyte donation cycles: A randomized clinical trial. Eur. J. Obstet. Gynecol. Reprod. Biol. 2012, 162, 169–173. [Google Scholar] [CrossRef]
- Farquhar, C.M.; Bhattacharya, S.; Repping, S.; Mastenbroek, S.; Kamath, M.S.; Marjoribanks, J.; Boivin, J. Female subfertility. Nat. Rev. Dis. Prim. 2019, 5, 7. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Lu, Y. Study on artificial intelligence: The state of the art and future prospects. J. Ind. Inf. Integr. 2021, 23, 100224. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Z.; Yang, H.; Yang, L. Artificial intelligence applications in the development of autonomous vehicles: A survey. IEEE/CAA J. Autom. Sin. 2020, 7, 315–329. [Google Scholar] [CrossRef]
- Abduljabbar, R.; Dia, H.; Liyanage, S.; Bagloee, S.A. Applications of Artificial Intelligence in Transport: An Overview. Sustainability 2019, 11, 189. [Google Scholar] [CrossRef] [Green Version]
- Bahrammirzaee, A. A comparative survey of artificial intelligence applications in finance: Artificial neural networks, expert system and hybrid intelligent systems. Neural Comput. Appl. 2010, 19, 1165–1195. [Google Scholar] [CrossRef]
- Abdel-Hamid, O.; Mohamed, A.-R.; Jiang, H.; Deng, L.; Penn, G.; Yu, D.; Abdel-Hamid, O.; Mohamed, A.-R.; Jiang, H.; Deng, L.; et al. Convolutional Neural Networks for Speech Recognition. IEEE/ACM Trans. Audio Speech Lang. Process 2014, 22, 1533–1545. [Google Scholar] [CrossRef] [Green Version]
- Taigman, Y.; Yang, M.; Ranzato, M.; Wolf, L. DeepFace: Closing the Gap to Human-Level Performance in Face Verification. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1701–1708. [Google Scholar]
- Javorsky, E.; Tegmark, M.; Helfand, I. Lethal autonomous weapons. BMJ 2019, 364, l1171. [Google Scholar] [CrossRef] [PubMed]
- Brenneke, M. Lethal Autonomous Weapon Systems and Their Compatibility with International Humanitarian Law: A Primer on the Debate. In Yearbook of International Humanitarian Law, Volume 21 (2018); Gill, T.D., Geiß, R., Krieger, H., Paulussen, C., Eds.; T.M.C. Asser Press: The Hague, The Netherlands, 2020; Volume 21, pp. 59–98. ISBN 9789462653429. [Google Scholar]
- Ravenscroft, I. Philosophy of Mind: A Beginner's Guide; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Sagiroglu, D.S.; Sinanc, D. Big data: A review. In Proceedings of the 2013 International Conference on Collaboration Technologies and Systems [CTS], San Diego, CA, USA, 20–24 May 2013; pp. 42–47. [Google Scholar]
- Marr, B. How Much Data Do We Create Every Day? The Mind-Blowing Stats Everyone Should Read. 2021. Available online: https://bernardmarr.com/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/ (accessed on 30 September 2022).
- Nadkarni, P.M.; Ohno-Machado, L.; Chapman, W.W. Natural language processing: An introduction. J. Am. Med. Inform. Assoc. 2011, 18, 544–551. [Google Scholar] [CrossRef] [Green Version]
- Mahesh, B. Machine Learning Algorithms—A Review. Int. J. Sci. Res. 2018, 9, 381–386. [Google Scholar] [CrossRef]
- Hamet, P.; Tremblay, J. Artificial intelligence in medicine. Metabolism 2017, 69, S36–S40. [Google Scholar] [CrossRef]
- Kulkarni, S.; Seneviratne, N.; Baig, M.S.; Khan, A.H.A. Artificial Intelligence in Medicine: Where Are We Now? Acad. Radiol. 2020, 27, 62–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.; Pan, W.; Jin, L.; Li, Y.; Geng, Y.; Gao, C.; Chen, G.; Wang, H.; Ma, D.; Liao, S. Artificial intelligence in reproductive medicine. Reproduction 2019, 158, R139–R154. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Thakur, N.; Sharma, A. A review of supervised machine learning algorithms. In Proceedings of the 2016 3rd International Conference on Computing for Sustainable Global Development [INDIACom], New Delhi, India, 16–18 March 2016; pp. 1310–1315. [Google Scholar]
- VerMilyea, M.; Hall, J.M.M.; Diakiw, S.M.; Johnston, A.; Nguyen, T.; Perugini, D.; Miller, A.; Picou, A.; Murphy, A.P.; Perugini, M. Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF. Hum. Reprod. 2020, 35, 770–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kragh, M.F.; Karstoft, H. Embryo selection with artificial intelligence: How to evaluate and compare methods? J. Assist. Reprod. Genet. 2021, 38, 1675–1689. [Google Scholar] [CrossRef]
- Chen, F.; Chen, Y.; Mai, Q. Multi-Omics Analysis and Machine Learning Prediction Model for Pregnancy Outcomes After Intracytoplasmic Sperm Injection–in vitro Fertilization. Front. Public Health 2022, 10, 924539. [Google Scholar] [CrossRef]
- Gentleman, R.; Carey, V.J. Unsupervised Machine Learning. In Bioconductor Case Studies; Springer: New York, NY, USA, 2008; pp. 137–157. ISBN 9780387772394. [Google Scholar]
- Milewska, A.; Jankowska, D.; Citko, D.; Wiesak, T.; Acacio, B.; Milewski, R. The Use of Principal Component Analysis and Logistic Regression in Prediction of Infertility Treatment Outcome. Stud. Logic. Gramm. Rhetor. 2014, 39, 7–23. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Zhao, M.; Xu, M.; Li, H.; Alqawasmeh, O.; Chung, J.P.W.; Li, T.C.; Lee, T.; Tang, P.M.; Chan, D.Y.L. Application of convolutional neural network on early human embryo segmentation during in vitro fertilization. J. Cell. Mol. Med. 2021, 25, 2633–2644. [Google Scholar] [CrossRef]
- Huang, T.T.; Kosasa, T.; Walker, B.; Arnett, C.; Huang, C.T.; Yin, C.; Harun, Y.; Ahn, H.J.; Ohta, A. Deep learning neural network analysis of human blastocyst expansion from time-lapse image files. Reprod. Biomed. Online 2021, 42, 1075–1085. [Google Scholar] [CrossRef]
- Jayakumaran, J.; Patel, S.D.; Gangrade, B.K.; Narasimhulu, D.M.; Pandian, S.R.; Silva, C. Robotic-assisted laparoscopy in reproductive surgery: A contemporary review. J. Robot. Surg. 2017, 11, 97–109. [Google Scholar] [CrossRef]
- Moon, A.S.; Garofalo, J.; Koirala, P.; Vu, M.-L.T.; Chuang, L. Robotic Surgery in Gynecology. Surg. Clin. North Am. 2020, 100, 445–460. [Google Scholar] [CrossRef] [PubMed]
- Parekattil, S.J.; Gudeloglu, A. Robotic assisted andrological surgery. Asian J. Androl. 2012, 15, 67–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.-W.; Kuo, C.-Y.; Chen, C.-H.; Hsieh, Y.-H.; Su, E.C.-Y. Predicting clinical pregnancy using clinical features and machine learning algorithms in in vitro fertilization. PLoS ONE 2022, 17, e0267554. [Google Scholar] [CrossRef] [PubMed]
- Practice Committee of the American Society for Reproductive Medicine. Practice Committee of the American Society for Reproductive Medicine. Fertility evaluation of infertile women: A committee opinion. Fertil. Steril. 2021, 116, 1255–1265. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Bai, S.; Jiang, X.; Luo, L.; Tong, X.; Zheng, S.; Wang, Y.; Xu, B. Multifactor Prediction of Embryo Transfer Outcomes Based on a Machine Learning Algorithm. Front. Endocrinol. 2021, 12, 745039. [Google Scholar] [CrossRef] [PubMed]
- Goyal, A.; Kuchana, M.; Ayyagari, K.P.R. Machine learning predicts live-birth occurrence before in-vitro fertilization treatment. Sci. Rep. 2020, 10, 20925. [Google Scholar] [CrossRef]
- Liu, L.; Jiao, Y.; Li, X.; Ouyang, Y.; Shi, D. Machine learning algorithms to predict early pregnancy loss after in vitro fertilization-embryo transfer with fetal heart rate as a strong predictor. Comput. Methods Programs Biomed. 2020, 196, 105624. [Google Scholar] [CrossRef]
- Vogiatzi, P.; Pouliakis, A.; Siristatidis, C. An artificial neural network for the prediction of assisted reproduction outcome. J. Assist. Reprod. Genet. 2019, 36, 1441–1448. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Z.; Du, M.; Liu, Z. Artificial Intelligence in the Assessment of Female Reproductive Function Using Ultrasound: A Review. J. Ultrasound Med. 2021, 41, 1343–1353. [Google Scholar] [CrossRef]
- Nikbakht, R.; Mohammadjafari, R.; Rajabalipour, M.; Moghadam, M.T. Evaluation of oocyte quality in Polycystic ovary syndrome patients undergoing ART cycles. Fertil. Res. Pract. 2021, 7, 2. [Google Scholar] [CrossRef]
- Zhang, C.-H.; Chen, C.; Wang, J.-R.; Wang, Y.; Wen, S.-X.; Cao, Y.-P.; Qian, W.-P. An endometrial receptivity scoring system basing on the endometrial thickness, volume, echo, peristalsis, and blood flow evaluated by ultrasonography. Front. Endocrinol. 2022, 13, 907874. [Google Scholar] [CrossRef] [PubMed]
- Kiruthika, V.; Ramya, M. Automatic Segmentation of Ovarian Follicle Using K-Means Clustering. In Proceedings of the 2014 Fifth International Conference on Signal and Image Processing, Bangalore, India, 8–10 January 2014. [Google Scholar] [CrossRef]
- Faghih, R.T.; Styer, A.K.; Brown, E.N. Automated ovarian follicular monitoring: A novel real-time approach. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Republic of Korea, 11–15 July 2017. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, W.; Good, S.; Zhou, K.S.; Comaniciu, D. Automatic ovarian follicle quantification from 3D ultrasound data using global/local context with database guided segmentation. In Proceedings of the IEEE International Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009. [Google Scholar]
- Zhang, Y.; Wang, Z.; Zhang, J.; Wang, C.; Wang, Y.; Chen, H.; Shan, L.; Huo, J.; Gu, J.; Ma, X. Deep learning model for classifying endometrial lesions. J. Transl. Med. 2021, 19, 10. [Google Scholar] [CrossRef] [PubMed]
- Jakubczyk, P.; Paja, W.; Pancerz, K.; Cebulski, J.; Depciuch, J.; Uzun, Ö.; Tarhan, N.; Guleken, Z. Determination of idiopathic female infertility from infrared spectra of follicle fluid combined with gonadotrophin levels, multivariate analysis and machine learning methods. Photodiagn. Photodyn. Ther. 2022, 38, 102883. [Google Scholar] [CrossRef] [PubMed]
- Nikiforov, D.; Grøndahl, M.L.; Hreinsson, J.; Andersen, C.Y. Human Oocyte Morphology and Outcomes of Infertility Treatment: A Systematic Review. Reprod. Sci. 2021, 29, 2768–2785. [Google Scholar] [CrossRef] [PubMed]
- Zaninovic, N.; Elemento, O.; Rosenwaks, Z. Artificial intelligence: Its applications in reproductive medicine and the assisted reproductive technologies. Fertil. Steril. 2019, 112, 28–30. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.; Yoon, S.N. Application of Artificial Intelligence-Based Technologies in the Healthcare Industry: Opportunities and Challenges. Int. J. Environ. Res. Public Health 2021, 18, 271. [Google Scholar] [CrossRef] [PubMed]
- Bori, L.; Paya, E.; Alegre, L.; Viloria, T.A.; Remohi, J.A.; Naranjo, V.; Meseguer, M. Novel and conventional embryo parameters as input data for artificial neural networks: An artificial intelligence model applied for prediction of the implantation potential. Fertil. Steril. 2020, 114, 1232–1241. [Google Scholar] [CrossRef]
- Mora-Sánchez, A.; Aguilar-Salvador, D.-I.; Nowak, I. Towards a gamete matching platform: Using immunogenetics and artificial intelligence to predict recurrent miscarriage. NPJ Digit. Med. 2019, 2, 12. [Google Scholar] [CrossRef]
- Gambadauro, P.; Navaratnarajah, R. Reporting of embryo transfer methods in IVF research: A cross-sectional study. Reprod. Biomed. Online 2015, 30, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Schieve, L.A.; Peterson, H.B.; Meikle, S.F.; Jeng, G.; Danel, I.; Burnett, N.M.; Wilcox, L.S. Live-birth rates and multiple-birth risk using in vitro fertilization. JAMA 1999, 282, 1832–1838. [Google Scholar] [CrossRef] [Green Version]
- European IVF-Monitoring Consortium (EIM); European Society of Human Reproduction and Embryology (ESHRE); Kupka, M.S.; D’Hooghe, T.; Ferraretti, A.P.; de Mouzon, J.; Erb, K.; Castilla, J.A.; Calhaz-Jorge, C.; De Geyter, C.; et al. Assisted reproductive technology in Europe, 2011: Results generated from European registers by ESHRE. Hum. Reprod. 2016, 31, 233–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D'Alton, M.; Breslin, N. Management of multiple gestations. Int. J. Gynecol. Obstet. 2020, 150, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Gerris, J.; De Neubourg, D.; Mangelschots, K.; Van Royen, E.; Van De Meerssche, M.; Valkenburg, M. Prevention of twin pregnancy after in-vitro fertilization or intracytoplasmic sperm injection based on strict embryo criteria: A prospective randomized clinical trial. Hum. Reprod. 1999, 14, 2581–2587. [Google Scholar] [CrossRef]
- Chen, F.; De Neubourg, D.; Debrock, S.; Peeraer, K.; D’Hooghe, T.; Spiessens, C. Selecting the embryo with the highest implantation potential using a data mining based prediction model. Reprod. Biol. Endocrinol. 2016, 14, 10. [Google Scholar] [CrossRef] [Green Version]
- Kirkegaard, K.; Agerholm, I.E.; Ingerslev, H.J. Time-lapse monitoring as a tool for clinical embryo assessment. Hum. Reprod. 2012, 27, 1277–1285. [Google Scholar] [CrossRef] [Green Version]
- Vaegter, K.K.; Lakic, T.G.; Olovsson, M.; Berglund, L.; Brodin, T.; Holte, J. Which factors are most predictive for live birth after in vitro fertilization and intracytoplasmic sperm injection (IVF/ICSI) treatments? Analysis of 100 prospectively recorded variables in 8,400 IVF/ICSI single-embryo transfers. Fertil. Steril. 2017, 107, 641–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, B.M.; Boel, M.; Montag, M.; Gardner, D.K. Development of a generally applicable morphokinetic algorithm capable of predicting the implantation potential of embryos transferred on Day 3. Hum. Reprod. 2016, 31, 2231–2244. [Google Scholar] [CrossRef] [Green Version]
- Adashi, E.Y.; Barri, P.N.; Berkowitz, R.; Braude, P.; Bryan, E.; Carr, J.; Cohen, J.; Collins, J.; Devroey, P.; Frydman, R.; et al. Infertility therapy-associated multiple pregnancies (births): An ongoing epidemic. Reprod. Biomed. Online 2003, 7, 515–542. [Google Scholar] [CrossRef]
- Raef, B.; Maleki, M.; Ferdousi, R. Computational prediction of implantation outcome after embryo transfer. Health Inform. J. 2019, 26, 1810–1826. [Google Scholar] [CrossRef] [Green Version]
- Van Loendersloot, L.L.; Moolenaar, L.M.; van Wely, M.; Repping, S.; Bossuyt, P.M.; Hompes, P.G.; van der Veen, F.; Mol, B.W.J. Cost-effectiveness of single versus double embryo transfer in IVF in relation to female age. Eur. J. Obstet. Gynecol. Reprod. Biol. 2017, 214, 25–30. [Google Scholar] [CrossRef]
- Shen, L.; Zhang, Y.; Chen, W.; Yin, X. The Application of Artificial Intelligence in Predicting Embryo Transfer Outcome of Recurrent Implantation Failure. Front. Physiol. 2022, 13, 885661. [Google Scholar] [CrossRef] [PubMed]
- Fainberg, J.; Kashanian, J.A. Recent advances in understanding and managing male infertility. F1000Research 2019, 8, 670. [Google Scholar] [CrossRef] [PubMed]
- Oliva, A.; Spira, A.; Multigner, L. Contribution of environmental factors to the risk of male infertility. Hum. Reprod. 2001, 16, 1768–1776. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, A.J.; Kumar, Y. Seminal quality prediction using data mining methods. Technol. Health Care 2014, 22, 531–545. [Google Scholar] [CrossRef] [PubMed]
- Gil, D.; Girela, J.L.; De Juan, J.; Gomez-Torres, M.J.; Johnsson, M. Predicting seminal quality with artificial intelligence methods. Expert Syst. Appl. 2012, 39, 12564–12573. [Google Scholar] [CrossRef]
- Badura, A.; Marzec-Wróblewska, U.; Kamiński, P.; Łakota, P.; Ludwikowski, G.; Szymański, M.; Wasilow, K.; Lorenc, A.; Buciński, A. Prediction of semen quality using artificial neural network. J. Appl. Biomed. 2019, 17, 167–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vickram, A.S.; Kamini, A.R.; Das, R.; Pathy, M.R.; Parameswari, R.; Archana, K.; Sridharan, T.B. Validation of artificial neural network models for predicting biochemical markers associated with male infertility. Syst. Biol. Reprod. Med. 2016, 62, 258–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen, 6th ed.; World Health Organization: Geneva, Switzerland, 2021; Available online: https://www.who.int/publications/i/item/9789240030787 (accessed on 30 September 2022).
- Chu, K.Y.; Nassau, D.E.; Arora, H.; Lokeshwar, S.D.; Madhusoodanan, V.; Ramasamy, R. Artificial Intelligence in Reproductive Urology. Curr. Urol. Rep. 2019, 20, 52. [Google Scholar] [CrossRef]
- Lammers, J.; Splingart, C.; Barrière, P.; Jean, M.; Freour, T. Double-blind prospective study comparing two automated sperm analyzers versus manual semen assessment. J. Assist. Reprod. Genet. 2013, 31, 35–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hicks, S.A.; Andersen, J.M.; Witczak, O.; Thambawita, V.; Halvorsen, P.; Hammer, H.L.; Haugen, T.B.; Riegler, M.A. Machine Learning-Based Analysis of Sperm Videos and Participant Data for Male Fertility Prediction. Sci. Rep. 2019, 9, 16770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lesani, A.; Kazemnejad, S.; Zand, M.M.; Azadi, M.; Jafari, H.; Mofrad, M.R.; Nosrati, R. Quantification of human sperm concentration using machine learning-based spectrophotometry. Comput. Biol. Med. 2020, 127, 104061. [Google Scholar] [CrossRef] [PubMed]
- Haugen, T.B.; Andersen, J.M.; Witczak, O.; Hammer, H.L.; Hicks, S.A.; Borgli, R.J.; Halvorsen, P.; Riegler, M.A. VISEM: A Multimodal Video Dataset of Human Spermatozoa. 2019. Available online: http://rgdoi.net/10.13140/RG.2.2.16104.93444 (accessed on 30 September 2022).
- Agarwal, A.; Selvam, M.K.P.; Sharma, R.; Master, K.; Sharma, A.; Gupta, S.; Henkel, R. Home sperm testing device versus laboratory sperm quality analyzer: Comparison of motile sperm concentration. Fertil. Steril. 2018, 110, 1277–1284. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, M.R. Unexplained Infertility, the Controversial Matter in Management of Infertile Couples. J. Reprod. Infertil. 2015, 16, 1–2. [Google Scholar]
- Piché, M.-L.P.; Babineau, V.; Robitaille, J.; Lachance, É.; Ruchat, S.-M. Lifestyle-Related Factors Associated with Reproductive Health in Couples Seeking Fertility Treatments: Results of A Pilot Study. Int. J. Fertil. Steril. 2018, 12, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Broughton, D.E.; Moley, K.H. Obesity and female infertility: Potential mediators of obesity's impact. Fertil. Steril. 2017, 107, 840–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gambineri, A.; Laudisio, D.; Marocco, C.; Radellini, S.; Colao, A.; Savastano, S. Female infertility: Which role for obesity? Int. J. Obes. Suppl. 2019, 9, 65–72. [Google Scholar] [CrossRef]
- Bachelot, G.; Lévy, R.; Bachelot, A.; Faure, C.; Czernichow, S.; Dupont, C.; Lamazière, A.; Aknin, I.; Cedrin-Durnerin, I.; Cens, S.; et al. Proof of concept and development of a couple-based machine learning model to stratify infertile patients with idiopathic infertility. Sci. Rep. 2021, 11, 24003. [Google Scholar] [CrossRef] [PubMed]
- Montanari Vergallo, G.; Marinelli, E.; di Luca, N.M.; Zaami, S. Gamete Donation: Are Children Entitled to Know Their Genetic Origins? A Comparison of Opposing Views. The Italian State of Affairs. Eur. J. Health Law 2018, 25, 322–337. [Google Scholar] [CrossRef]
- Chowdhury, M.; Sadek, A.W. Advantages and limitations of artificial intelligence. Artif. Intell. Appl. Crit. Transp. Issues 2012, 6, 360–375. [Google Scholar]
- Keskinbora, K.H. Medical ethics considerations on artificial intelligence. J. Clin. Neurosci. 2019, 64, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Safdar, N.M.; Banja, J.D.; Meltzer, C.C. Ethical considerations in artificial intelligence. Eur. J. Radiol. 2020, 122, 108768. [Google Scholar] [CrossRef]
- Afnan, M.A.M.; Liu, Y.; Conitzer, V.; Rudin, C.; Mishra, A.; Savulescu, J.; Afnan, M. Interpretable, not black-box, artificial intelligence should be used for embryo selection. Hum. Reprod. Open 2021, 4, hoab040. [Google Scholar] [CrossRef] [PubMed]
- European Commission Press Release. Member States and Commission to Work Together to Boost Artificial Intelligence “Made in Europe”. Issued on 7 December 2018. Available online: https://ec.europa.eu/commission/presscorner/detail/en/IP_18_6689 (accessed on 3 October 2022).
- Bærøe, K.; Miyata-Sturm, A.; Henden, E. How to achieve trustworthy artificial intelligence for health. Bull. World Health Organ. 2020, 98, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Independent High-Level Expert Group on Artificial Intelligence Set Up by the European Commission. Ethics Guidelines for Trustworthy AI. Issued on 8 April 2019. Available online: https://ec.europa.eu/futurium/en/ai-alliance-consultation.1.html (accessed on 3 October 2022).
- WHO Guidance. Ethics and Governance of Artificial Intelligence for Health. Issued on 28 June 2021. Available online: https://www.who.int/publications/i/item/9789240029200 (accessed on 3 October 2022).
- Hogan, N.R.; Davidge, E.Q.; Corabian, G. On the Ethics and Practicalities of Artificial Intelligence, Risk Assessment, and Race. J. Am. Acad. Psychiatry Law 2021, 49, 326–334. [Google Scholar]
- Amann, J.; Blasimme, A.; Vayena, E.; Frey, D.; Madai, V.I. Explainability for artificial intelligence in healthcare: A multidisciplinary perspective. BMC Med. Inform. Decis. Mak. 2020, 20, 310. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medenica, S.; Zivanovic, D.; Batkoska, L.; Marinelli, S.; Basile, G.; Perino, A.; Cucinella, G.; Gullo, G.; Zaami, S. The Future Is Coming: Artificial Intelligence in the Treatment of Infertility Could Improve Assisted Reproduction Outcomes—The Value of Regulatory Frameworks. Diagnostics 2022, 12, 2979. https://doi.org/10.3390/diagnostics12122979
Medenica S, Zivanovic D, Batkoska L, Marinelli S, Basile G, Perino A, Cucinella G, Gullo G, Zaami S. The Future Is Coming: Artificial Intelligence in the Treatment of Infertility Could Improve Assisted Reproduction Outcomes—The Value of Regulatory Frameworks. Diagnostics. 2022; 12(12):2979. https://doi.org/10.3390/diagnostics12122979
Chicago/Turabian StyleMedenica, Sanja, Dusan Zivanovic, Ljubica Batkoska, Susanna Marinelli, Giuseppe Basile, Antonio Perino, Gaspare Cucinella, Giuseppe Gullo, and Simona Zaami. 2022. "The Future Is Coming: Artificial Intelligence in the Treatment of Infertility Could Improve Assisted Reproduction Outcomes—The Value of Regulatory Frameworks" Diagnostics 12, no. 12: 2979. https://doi.org/10.3390/diagnostics12122979
APA StyleMedenica, S., Zivanovic, D., Batkoska, L., Marinelli, S., Basile, G., Perino, A., Cucinella, G., Gullo, G., & Zaami, S. (2022). The Future Is Coming: Artificial Intelligence in the Treatment of Infertility Could Improve Assisted Reproduction Outcomes—The Value of Regulatory Frameworks. Diagnostics, 12(12), 2979. https://doi.org/10.3390/diagnostics12122979