Choice of Internal Rigid Fixation Materials in the Treatment of Facial Fractures
Metallic Rigid Internal Fixation for the Treatment of Craniomaxillofacial Trauma
A Historical Primer
The Science behind the Metal
Resorbable Rigid Internal Fixation for THE Treatment of Craniomaxillofacial Trauma
Deciding Between Metallic or Resorbable Rigid Internal Fixation for the Treatment of Craniomaxillofacial Trauma
Conclusion
References
- Rahn, B.A. Theoretical considerations in rigid fixation of facial bones. Clin Plast Surg 1989, 16, 21–27. [Google Scholar]
- Fearon, J.A.; Munro, I.R.; Bruce, D.A. Observations on the use ofrigid fixation for craniofacial deformities in infants and young children. Plast Reconstr Surg 1995, 95, 634–637. [Google Scholar] [CrossRef] [PubMed]
- Francel, T.J.; Birely, B.C.; Ringelman, P.R.; Manson, P.N. The fateof plates and screws after facial fracture reconstruction. Plast Reconstr Surg 1992, 90, 568–573. [Google Scholar] [CrossRef]
- Orringer, J.S.; Barcelona, V.; Buchman, S.R. Reasons for removalof rigid internal fixation devices in craniofacial surgery. J Craniofac Surg 1998, 9, 40–44. [Google Scholar]
- Yu, J.C.; Bartlett, S.P.; Goldberg, D.S.; et al. An experimentalstudy of the effects of craniofacial growth on the long-term positional stability of microfixation. J Craniofac Surg 1996, 7, 64–68. [Google Scholar] [PubMed]
- Cordewener, F.W.; Schmitz, J.P. The future of biodegradableosteosyntheses. Tissue Eng 2000, 6, 413–424. [Google Scholar] [PubMed]
- Jorgenson, D.S.; Centeno, J.A.; Mayer, M.H.; et al. Biologicresponse to passive dissolution of titanium craniofacial microplates. Biomaterials 1999, 20, 675–682. [Google Scholar] [CrossRef]
- Jorgenson, D.S.; Mayer, M.H.; Ellenbogen, R.G.; et al. Detectionof titanium in human tissues after craniofacial surgery. Plast Reconstr Surg 1997, 99, 976–979. [Google Scholar]
- Beals, S.P.; Munro, I.R. The use of miniplates in craniomaxillofacial surgery. Plast Reconstr Surg 1987, 79, 33–38. [Google Scholar]
- Schmidt, B.L.; Perrott, D.H.; Mahan, D.; Kearns, G. The removalof plates and screws after Le Fort I osteotomy. J Oral Maxillofac Surg 1998, 56, 184–188. [Google Scholar]
- Berryhill, W.E.; Rimell, F.L.; Ness, J.; Marentette, L.; Haines, S.J. Fate of rigid fixation in pediatric craniofacial surgery. Otolaryngol Head Neck Surg 1999, 121, 269–273. [Google Scholar]
- Eppley, B.L.; Platis, J.M.; Sadove, A.M. Experimental effects ofbone plating in infancy on craniomaxillofacial skeletal growth. Cleft Palate Craniofac J 1993, 30, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.Y.; Bartlett, S.P.; Yaremchuk, M.J.; et al. An experimentalstudy on the effect of rigid fixation on the developing craniofacial skeleton. Plast Reconstr Surg 1991, 87, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Resnick, J.I.; Kinney, B.M.; Kawamoto, H.K., Jr. The effect ofrigid internal fixation on cranial growth. Ann Plast Surg 1990, 25, 372–374. [Google Scholar] [CrossRef]
- Wong, L.; Richtsmeier, J.T.; Manson, P.N. Craniofacial growthfollowing rigid fixation: suture excision, miniplating, and microplating. J Craniofac Surg 1993, 4, 234–244. [Google Scholar]
- Majno, G. The Healing Hand: Man and Wound in the Ancient World; Harvard University Press: Cambridge, MA, 1991. [Google Scholar]
- Conn, H. The internal fixation of fractures. J Bone Joint Surg 1931, 13, 261–268. [Google Scholar]
- Ferguson, A. Bechtol, C., Ferguson, A.L.P., Eds.; Historical use of metals in the human body. In Metals and Engineering in Bone and Joint Surgery; Williams and Wilkins Company: Baltimore, MD, 1959; pp. 1–18. [Google Scholar]
- Mukerji, R.; Mukerji, G.; McGurk, M. Mandibular fractures: historical perspective. Br J Oral Maxillofac Surg 2006, 44, 222–228. [Google Scholar] [CrossRef]
- Rowe, N.; Kiley, H. Fractures of the Facial Skeleton; E & S Livingstone Limited: London, 1955. [Google Scholar]
- Rushton, N. Biomaterials. In Evolution of Orthopedic Surgery; Klenerman, L., Ed.; RSM Press: London, 2002; pp. 83–89. [Google Scholar]
- Jones, A.R. Sir William Arbuthnot Lane. J Bone Joint Surg Br 1952, 34, 478–482. [Google Scholar]
- Peltier, L. Fractures: A History and Iconography of TheirTreatment; Norman Publishing: Novato, CA, 1990. [Google Scholar]
- Sherman, W. Vanadium steel plates and screws. Surg GynecolObstet 1912, 14, 629–634. [Google Scholar]
- Staiger, M.P.; Pietak, A.M.; Huadmai, J.; Dias, G. Magnesiumand its alloys as orthopedic biomaterials: a review. Biomaterials 2006, 27, 1728–1734. [Google Scholar]
- Dorrance, G.; Bransfield, J.; Mann, J. The History of Treatment of Fractured Jaws; Privately published: Philadelphia, PA, 1941. [Google Scholar]
- Bigelow, H. Vitallium bone screws and appliances fortreatment of fracture of mandible. J Oral Surg (Chic) 1943, 1, 131. [Google Scholar]
- Leventhal, G.S. Titanium, a metal for surgery. J Bone JointSurg Am 1951, 33, 473–474. [Google Scholar]
- Snell, J.; Dott, W. The use of metallic plates in surgery of thefacial skeleton. Presented at: the 4th International Congress of Plastic and Reconstructive Surgery, Rome; 1967. [Google Scholar]
- Luhr, H.G. On the stable osteosynthesis in mandibularfractures. Dtsch Zahnarztl Z 1968, 23, 754. [Google Scholar]
- Luhr, H.G. Presented at: Symposium on Methods of FacialSkeletal Fixation. 3 December 1983; Philadelphia, PA. [Google Scholar]
- Munro, I.R. The Luhr fixation system for the craniofacial skeleton. Clin Plast Surg 1989, 16, 41–48. [Google Scholar]
- Steinemann, S. Greenberg, A., Prein, J., Eds.; Metal for craniomaxillofacial internal fixation implants and its physiologic implications. In Craniomaxillofacial Reconstructive and Corrective Bone Surgery; Springer: New York, NY, 2006. [Google Scholar]
- Steinmann, S.G.; Eulenberger, J.; Mausli, P.A.; Schroeder, A. Biological and Biomechanical Performance of Biomaterials; Elsevier Science: Amsterdam, 1986. [Google Scholar]
- Barone, C.M.; Eisig, S.; Wallach, S.; Mitnick, R.; Mednick, R. Effects of rigid fixation device composition on three-dimensional computed axial tomography imaging: direct measurements on a pig model. J Oral Maxillofac Surg 1994, 52, 737–740. [Google Scholar]
- Fiala, T.G.; Novelline, R.A.; Yaremchuk, M.J. Comparison of CTimaging artifacts from craniomaxillofacial internal fixation devices. Plast Reconstr Surg 1993, 92, 1227–1232. [Google Scholar] [PubMed]
- Sullivan, P.K.; Smith, J.F.; Rozzelle, A.A. Cranio-orbital reconstruction: safety and image quality of metallic implants on CT and MRI scanning. Plast Reconstr Surg 1994, 94, 589–596. [Google Scholar]
- Hobar, P.C. Methods of rigid fixation. Clin Plast Surg 1992, 19, 31–39. [Google Scholar]
- Luhr, H.G. A micro-system for cranio-maxillofacial skeletalfixation: preliminary report. J Craniomaxillofac Surg 1988, 16, 312–314. [Google Scholar]
- Simpson, J.P.; Geret, V.; Brown, S.A.; Merrit, K. Implantretrieval: material and biologic analysis. NBS Spec Publ 1981, 601, 395–422. [Google Scholar]
- Gross, P.P.; Gold, L. The compatibility of Vitallium andAustanium in completely buried implants in dogs. Oral Surg Oral Med Oral Pathol 1957, 10, 769–780. [Google Scholar] [CrossRef] [PubMed]
- Sargent, L.A.; Fulks, K.D. Reconstruction of internal orbitalfractures with Vitallium mesh. Plast Reconstr Surg 1991, 88, 31–38. [Google Scholar] [PubMed]
- Sengezer, M.; Sadove, R.C. Reconstruction of midface bonedefects with vitallium micromesh. J Craniofac Surg 1992, 3, 125–133. [Google Scholar]
- Lalor, P.A.; Revell, P.A.; Gray, A.B.; et al. Sensitivity to titanium: a cause of implant failure? J Bone Joint Surg Br 1991, 73, 25–28. [Google Scholar]
- Moran, C.A.; Mullick, F.G.; Ishak, K.G.; Johnson, F.B.; Hummer, W.B. Identification of titanium in human tissues: probable role in pathologic processes. Hum Pathol 1991, 22, 450–454. [Google Scholar]
- Redline, S.; Barna, B.P.; Tomashefski, J.F., Jr.; Abraham, J.L. Granulomatous disease associated with pulmonary deposition of titanium. Br J Ind Med 1986, 43, 652–656. [Google Scholar] [CrossRef]
- Weingart, D.; Steinemann, S.; Schilli, W.; et al. Titaniumdeposition in regional lymph nodes after insertion of titanium screw implants in maxillofacial region. Int J Oral Maxillofac Surg 1994, 23, 450–452. [Google Scholar]
- Moberg, L.E.; Nordenram, A.; Kjellman, O. Metal release fromplates used in jaw fracture treatment: a pilot study. Int J Oral Maxillofac Surg 1989, 18, 311–314. [Google Scholar] [CrossRef]
- Rosenberg, A.; Gratz, K.W.; Sailer, H.F. Should titaniumminiplates be removed after bone healing is complete? Int J Oral Maxillofac Surg 1993, 22, 185–188. [Google Scholar]
- Marschall, M.A.; Chidyllo, S.A.; Figueroa, A.A.; Cohen, M. Long-term effects of rigid fixation on the growing craniomaxillofacial skeleton. J Craniofac Surg 1991, 2, 63–68. [Google Scholar]
- Yaremchuk, M.J.; Fiala, T.G.; Barker, F.; Ragland, R. The effectsof rigid fixation on craniofacial growth of rhesus monkeys. Plast Reconstr Surg 1994, 93, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Manson, P.N. Discussion on the long-term effects of rigidfixation on the growing craniomaxillofacial skeleton. J Craniofac Surg 1991, 2, 69–70. [Google Scholar]
- Goldberg, D.S.; Bartlett, S.; Yu, J.C.; Hunter, J.V.; Whitaker, L.A. Critical review of microfixation in pediatric craniofacial surgery. J Craniofac Surg 1995, 6, 301–307. [Google Scholar] [CrossRef]
- Bell, R.B.; Kindsfater, C.S. The use of biodegradable plates andscrews to stabilize facial fractures. J Oral Maxillofac Surg 2006, 64, 31–39. [Google Scholar] [PubMed]
- Bos, R.R. Treatment of pediatric facial fractures: the case formetallic fixation. J Oral Maxillofac Surg 2005, 63, 382–384. [Google Scholar] [CrossRef]
- Rudderman, R.H.; Mullen, R.L. Biomechanics of the facialskeleton. Clin Plast Surg 1992, 19, 11–29. [Google Scholar] [CrossRef]
- Cutright, D.E.; Hunsuck, E.E.; Beasley, J.D. Fracture reductionusing a biodegradable material, polylactic acid. J Oral Surg 1971, 29, 393–397. [Google Scholar]
- Suuronen, R.; Lindqvist, C. Bioresorbable materials for bonefixation: review of biological concepts and mechanical aspects. In Craniomaxillofacial Reconstructive and Corrective Bone Surgery; Greenberg, A., Prein, J., Eds.; Springer: New York, NY, 2006. [Google Scholar]
- Gerlach, K.L.; Eitenmuller, J. Biomaterials and Clinical Applications; Elsevier Science: Amsterdam, 1987; pp. 439–445. [Google Scholar]
- Eppley, B.L.; Prevel, C.D.; Sadove, A.M.; Sarver, D. Resorbablebone fixation: its potential role in cranio-maxillofacial trauma. J Craniomaxillofac Trauma 1996, 2, 56–60. [Google Scholar]
- Edwards, R.C.; Kiely, K.D.; Eppley, B.L. The fate of resorbablepoly-L-lactic/polyglycolic acid (LactoSorb) bone fixation devices in orthognathic surgery. J Oral Maxillofac Surg 2001, 59, 19–25. [Google Scholar] [CrossRef]
- Eppley, B.L.; Reilly, M. Degradation characteristics of PLLAPGA bone fixation devices. J Craniofac Surg 1997, 8, 116–120. [Google Scholar] [CrossRef]
- Hochuli-Vieira, E.; Cabrini Gabrielli, M.A.; Pereira-Filho, V.A.; Gabrielli, M.F.; Padilha, J.G. Rigid internal fixation with titanium versus bioresorbable miniplates in the repair of mandibular fractures in rabbits. Int J Oral Maxillofac Surg 2005, 34, 167–173. [Google Scholar] [PubMed]
- Quereshy, F.A.; Goldstein, J.A.; Goldberg, J.S.; Beg, Z. Theefficacy of bioresorbable fixation in the repair of mandibular fractures: an animal study. J Oral Maxillofac Surg 2000, 58, 1263–1269. [Google Scholar] [CrossRef] [PubMed]
- Wiltfang, J.; Merten, H.A.; Becker, H.J.; Luhr, H.G. Theresorbable miniplate system Lactosorb in a growing cranioosteoplasty animal model. J Craniomaxillofac Surg 1999, 27, 207–210. [Google Scholar] [CrossRef]
- Eppley, B.L.; Sadove, A.M. A comparison of resorbable andmetallic fixation in healing of calvarial bone grafts. Plast Reconstr Surg 1995, 96, 316–322. [Google Scholar] [PubMed]
- Synthes, C.M.F. Mechanical Test Data for Synthes Resorbablevs. Titanium Implants; Synthes CMF: West Chester, PA, 2000. [Google Scholar]
- Gosain, A.K.; Song, L.; Corrao, M.A.; Pintar, F.A. Biomechanicalevaluation of titanium, biodegradable plate and screw, and cyanoacrylate glue fixation systems in craniofacial surgery. Plast Reconstr Surg 1998, 101, 582–591. [Google Scholar]
- Kasrai, L.; Hearn, T.; Gur, E.; Forrest, C.R. A biomechanicalanalysis of the orbitozygomatic complex in human cadavers: examination of load sharing and failure patterns following fixation with titanium and bioresorbable plating systems. J Craniofac Surg 1999, 10, 237–243. [Google Scholar]
- Shetty, V.; Caputo, A.A.; Kelso, I. Torsion-axial force characteristics of SR-PLLA screws. J Craniomaxillofac Surg 1997, 25, 19–23. [Google Scholar]
- Chacon, G.E.; Dillard, F.M.; Clelland, N.; Rashid, R. Comparison of strains produced by titanium and poly D, L-lactide acid plating systems to in vitro forces. J Oral Maxillofac Surg 2005, 63, 968–972. [Google Scholar] [CrossRef]
- Eppley, B.L.; Prevel, C.D. Nonmetallic fixation in traumatic midfacial fractures. J Craniofac Surg 1997, 8, 103–109. [Google Scholar] [CrossRef]
- Tormala, P.; Vasenius, J.; Vainionpaa, S.; et al. Ultra-highstrength absorbable self-reinforced polyglycolide (SR-PGA) composite rods for internal fixation of bone fractures: in vitro and in vivo study. J Biomed Mater Res 1991, 25, 1–22. [Google Scholar]
- Eppley, B.L. Resorbable biotechnology for craniomaxillofacialsurgery. J Craniofac Surg 1997, 8, 85–86. [Google Scholar] [PubMed]
- Kumar, A.V.; Staffenberg, D.A.; Petronio, J.A.; Wood, R.J. Bioabsorbable plates and screws in pediatric craniofacial surgery: a review of 22 cases. J Craniofac Surg 1997, 8, 97–99. [Google Scholar]
- Edwards, R.C.; Kiely, K.D. Resorbable fixation of Le Fort I osteotomies. J Craniofac Surg 1998, 9, 210–214. [Google Scholar] [PubMed]
- Edwards, R.C.; Kiely, K.D.; Eppley, B.L. Resorbable PLLA-PGA screw fixation of mandibular sagittal split osteotomies. J Craniofac Surg 1999, 10, 230–236. [Google Scholar] [PubMed]
- Edwards, R.C.; Kiely, K.D.; Eppley, B.L. Resorbable fixation techniques for genioplasty. J Oral Maxillofac Surg 2000, 58, 269–272. [Google Scholar]
- Haers, P.E.; Sailer, H.F. Biodegradable self-reinforced poly-L/DL-lactide plates and screws in bimaxillary orthognathic surgery: short term skeletal stability and material related failures. J Craniomaxillofac Surg 1998, 26, 363–372. [Google Scholar]
- Landes, C.A.; Ballon, A. Five-year experience comparingresorbable to titanium miniplate osteosynthesis in cleft lip and palate orthognathic surgery. Cleft Palate Craniofac J 2006, 43, 67–74. [Google Scholar]
- Shand, J.M.; Heggie, A.A. Use of a resorbable fixation system in orthognathic surgery. Br J Oral Maxillofac Surg 2000, 38, 335–337. [Google Scholar]
- Stryker Craniomaxillofacial. Inion CPS Biodegradeable Fixation System [product guide]; Stryker Craniomaxillofacial: Kalamazoo, MI, 2008. [Google Scholar]
- Majewski, W.T.; Yu, J.C.; Ewart, C.; Aguillon, A. Posttraumaticcraniofacial reconstruction using combined resorbable and nonresorbable fixation systems. Ann Plast Surg 2002, 48, 471–476. [Google Scholar]
- Tatum, S.A.; Kellman, R.M.; Freije, J.E. Maxillofacial fixation with absorbable miniplates: computed tomographic followup. J Craniofac Surg 1997, 8, 135–140. [Google Scholar]
- Landes, C.A.; Ballon, A.; Roth, C. Maxillary and mandibularosteosyntheses with PLGA and P(L/DL)LA implants: a 5-year inpatient biocompatibility and degradation experience. Plast Reconstr Surg 2006, 117, 2347–2360. [Google Scholar] [PubMed]
- Kim, Y.K.; Kim, S.G. Treatment of mandible fractures usingbioabsorbable plates. Plast Reconstr Surg 2002, 110, 25–31. [Google Scholar] [PubMed]
- Hollier, L.H.; Rogers, N.; Berzin, E.; Stal, S. Resorbable mesh inthe treatment of orbital floor fractures. J Craniofac Surg 2001, 12, 242–246. [Google Scholar] [PubMed]
- Tuncer, S.; Yavuzer, R.; Kandal, S.; et al. Reconstruction oftraumatic orbital floor fractures with resorbable mesh plate. J Craniofac Surg 2007, 18, 598–605. [Google Scholar]
- Rudderman, R.H.; Mullen, R.L.; Phillips, J.H. The biophysics ofmandibular fractures: an evolution toward understanding. Plast Reconstr Surg 2008, 121, 596–607. [Google Scholar]
- Tams, J.; Otten, B.; Van Loon, J.P.; Bos, R.R. A computer studyof fracture mobility and strain on biodegradable plates used for fixation of mandibular fractures. J Oral Maxillofac Surg 1999, 57, 973–981. [Google Scholar]
- Yerit, K.C.; Hainich, S.; Turhani, D.; et al. Stability ofbiodegradable implants in treatment of mandibular fractures. Plast Reconstr Surg 2005, 115, 1863–1870. [Google Scholar]
- Suzuki, T.; Kawamura, H.; Kasahara, T.; Nagasaka, H. Resorbable poly-L-lactide plates and screws for the treatment of mandibular condylar process fractures: a clinical and radiologic follow-up study. J Oral Maxillofac Surg 2004, 62, 919–924. [Google Scholar]
- Landes, C.A.; Ballon, A. Indications and limitations in resorbable P(L70/30DL)LA osteosyntheses of displaced mandibular fractures in 4.5-year follow-up. Plast Reconstr Surg 2006, 117, 577–587. [Google Scholar]
- Senel, F.C.; Tekin, U.S.; Imamoglu, M. Treatment of a mandibular fracture with biodegradable plate in an infant: report of a case. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006, 101, 448–450. [Google Scholar]
- Yerit, K.C.; Hainich, S.; Enislidis, G.; et al. Biodegradablefixation of mandibular fractures in children: stability and early results. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2005, 100, 17–24. [Google Scholar] [PubMed]
Stryker Inion CPS* | Synthes Rapidy | Biomet LactoSorb SEz | KLS Martin Resorb X and SonicWeld Rx§ | |
Composition | Varying combinations of L-polylactic acid; D,L-polylactic acid; polyglycolic acid; trimethylene carbonate | 85:15 poly (L-lactide-co-glycolide) | 82:18 poly L-lactic acid: polyglycolic acid | Both systems are 100% poly (D,L-lactic acid) |
Degradation characteristics | BABY: strength retention 6–9 weeks; resorbed in 1–2 years ADULT: strength retention 9–14 weeks; resorbed 2–3 years | 85% strength at 8 weeks; resorbed within 12 months | 70% strength at 8 weeks, resorbed within 12 months | Strength retention to 10 weeks; resorbed in 1–2 years |
Available sizes for craniomaxillofacial use | BABY system: 1.5 mm ADULT system: 1.5, 2.0, 2.5 mm 2.8/3.1-mm (screws only) | 1.5-mm system 2.0-mm system | 1.5-mm system 2.0-mm system 2.5/2.8-mm (screws only) | Both Resorb X (screws) and SonicWeld Rx (pins): 1.6-mm system; 2.1-mm system |
Plate profile (thickness) | 1.5-mm system: 1.0 mm | 1.5-mm system: 0.8 mm | 1.5-mm system: 1.0 mm | Resorb X and SonicWeld Rx: all plates shapes |
2.0-mm system: 1.3 mm 2.5-mm system: 1.7 mm | 2.0-mm system: 1.2 mm | 2.0-mm system: 1.4 mm | 1.0 mm | |
Screw placement | Self-drilling tap or separate tap | Self-drilling tap or separate tap | Self-drilling tap or separate tap; push screws (no tapping required) | Resorb X: screws with self-drilling tap SonicWeld Rx: drill hole for pins and secure with ultrasonic frequency welder (no tapping required) |
Indicated for mandible fractures | Yes (with IMF only) | No | No | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2009 by the author. The Author(s) 2009.
Share and Cite
Gilardino, M.S.; Chen, E.; Bartlett, S.P. Choice of Internal Rigid Fixation Materials in the Treatment of Facial Fractures. Craniomaxillofac. Trauma Reconstr. 2009, 2, 49-60. https://doi.org/10.1055/s-0029-1202591
Gilardino MS, Chen E, Bartlett SP. Choice of Internal Rigid Fixation Materials in the Treatment of Facial Fractures. Craniomaxillofacial Trauma & Reconstruction. 2009; 2(1):49-60. https://doi.org/10.1055/s-0029-1202591
Chicago/Turabian StyleGilardino, Mirko S., Elliot Chen, and Scott P. Bartlett. 2009. "Choice of Internal Rigid Fixation Materials in the Treatment of Facial Fractures" Craniomaxillofacial Trauma & Reconstruction 2, no. 1: 49-60. https://doi.org/10.1055/s-0029-1202591
APA StyleGilardino, M. S., Chen, E., & Bartlett, S. P. (2009). Choice of Internal Rigid Fixation Materials in the Treatment of Facial Fractures. Craniomaxillofacial Trauma & Reconstruction, 2(1), 49-60. https://doi.org/10.1055/s-0029-1202591