Validation of Modified Hertel Exophthalmometer
Abstract
:Introduction
Aim
Objectives
Methodology
Inclusion Criteria
Exclusion Criteria
Plan for Statistics
Instrument Design
Measurement of Values
- The patient is seated in an upright position on a chair.
- Readings with standard Hertel exophthalmometer are taken by resting the instrument on both the lateral orbital rims of the patient and measuring the corneal projection values of the globes, which are reflected in the millimeter scale and are recorded in the case sheet.
- To avoid parallax errors, lines on the prism are placed into position by moving the examiner’s viewpoint; they are made to coincide before determining the measurement.
- These readings are repeated in the modified instrument on the same patient by paralleling the Hertel exophthalmometer in at least 2 planes (anteroposterior and horizontal) with the aid of the attached spirit level and the readings are recorded.
- For the modified Hertel, the footplate is rested on one of the rims and the 3D spirit level is used to make it parallel to the horizontal and anteroposterior plane. This is a highly reproducible position and the readings are done in a similar manner in the other side.
Results
Discussion
- The resting of the footplate on the lateral orbital rim may be unreliable if too much pressure is applied or if the instrument is not placed properly.
- There can be possible rotation of the instrument at the horizontal plane.
- Since it has 2 prisms that reflects the cornea, there can be parallax error while the measurement is recorded.[4]
Conclusion
Funding
Conflicts of Interest
References
- Foster, O.A. Differential diagnosis of the causes of exophthalmos. Br J Ophthalmol. 1938, 22, 364–375. [Google Scholar]
- Cohn, H.L. Messungen Der Prominenz Der AugenmittelsteinesneuenInstrumentes Des Exophtalmometers, 1868.
- Kashkouli, M.B.; Beigi, B.; Noorani, M.M.; Nojoomi, M. Hertel exophthalmometry: reliability and interobserver variation. Orbit. 2003, 22, 239–245. [Google Scholar] [CrossRef]
- Ameri, H.; Fenton, S. Comparison of unilateral and simultaneous bilateral measurement of the globe position, using the Hertel exophthalmometer. Ophthalmic Plast Reconstr Surg. 2004, 20, 448–451. [Google Scholar] [CrossRef]
- Choi, S.H.; Kang, D.H.; Gu, J.H. The correlation between the orbital volume ratio and enophthalmos in unoperated blowout fractures. Arch Plast Surg. 2016, 43, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Catone, G.A.; Morrissette, M.P.; Carlson, E.R. A retrospective study of untreated orbital blow-out fractures. J Oral Maxillofac Surg. 1988, 46, 1033–1037. [Google Scholar] [CrossRef]
- Hammer, B.; Prein, J. Correction of post-traumatic orbital deformities: operative techniques and review of 26 patients. J Craniomaxillofac Surg. 1995, 23, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Van Hout, W.M.; Van Cann, E.M.; Muradin, M.S.; Frank, M.H.; Koole, R. Intraoperative imaging for the repair of zygomaticomaxillary complex fractures: a comprehensive review of the literature. J Craniomaxillofac Surg. 2014, 42, 1918–1923. [Google Scholar] [CrossRef] [PubMed]
- Drews, L.C. Exophthalmometry and a new exophthalmometer. Trans Am Ophthalmol Soc. 1956, 54, 215. [Google Scholar]
- Chane, R.A.; Rootman, J. Enophthalmos: a clinical review. Ophthalmology. 1984, 91, 229–237. [Google Scholar]
- Nkenke, E.; Benz, M.; Maier, T.; et al. Relative enand exophthalmometry in zygomatic fractures comparing optical non-contact, non-ionizing 3D imaging to the Hertel instrument and computed tomography. J Craniomaxillofacial Surg. 2003, 31, 362–368. [Google Scholar] [CrossRef]
- Yeatts, R.P.; van Rens, E.; Taylor, C.L. Measurement of globe position in complex orbital fractures. I. A modification of Hertel’s exophthalmometer, using the external auditory canal as a reference point. Ophthalmic Plast Reconstr Surg. 1992, 8, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Kratky, V.; Hurwitz, J.J. Hertel exophthalmometry without orbital rim contact. Ophthalmology. 1994, 101, 931–937. [Google Scholar] [CrossRef] [PubMed]
- Stasior, O.G.; Roen, J.L. Traumatic enophthalmos. Ophthalmology. 1982, 89, 1267–1273. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.R.; Shin, S.O.; Choo, M.J.; Choi, Y.S. Relationship between the extent of fracture and the degree of enophthalmos in isolated blowout fractures of the medial orbital wall. J Oral Maxillofac Surg. 2000, 58, 617–620. [Google Scholar] [CrossRef]
- Manson, P.N.; Grivas, A.; Rosenbaum, A.; Vannier, M.; Zinreich, J.; Iliff, N. Studies on enophthalmos: II. The measurement of orbital injuries and their treatment by quantitative computed tomography. Plast Reconstr Surg. 1986, 77, 203–214. [Google Scholar] [CrossRef]
- Ramieri, G.; Spada, M.C.; Bianchi, S.D.; Berrone, S. Dimensions and volumes of the orbit and orbital fat in posttraumatic enophthalmos. Dentomaxillofac Radiol. 2000, 29, 302–311. [Google Scholar] [CrossRef] [PubMed]
- Nasir, S.A.; Ramli, R.; Jabar, N.A. Predictors of enophthalmos among adult patients with pure orbital blowout fractures. PloS One. 2018, 13, e0204946. [Google Scholar]
- Goldberg, R.A.; Relan, A.; Hoenig, J. Relationship of the eye to the bony orbit, with clinical correlations. Aust N Z J Ophthalmol. 1999, 27, 398–403. [Google Scholar]
- Parsons, G.S.; Mathog, R.H. Orbital wall and volume relationships. Arch Otolaryngol Head Neck Surg. 1988, 114, 743–747. [Google Scholar] [CrossRef]
- Koo, L.; Hatton, M.P.; Rubin, P.A. When is enophthalmos “significant”? Ophthalmic Plast Reconstr Surg. 2006, 22, 274–277. [Google Scholar] [CrossRef]
- Forrest, C.R. Jeffrey, W., Ed.; Secondary management of posttraumatic craniofacial deformities. In Plastic Surgery Secrets Plus, 2nd ed.; Mosby Elsevier, 2010; pp. 330–339. [Google Scholar]
- Bogren, H.G.; Franti, C.E.; Wilmarth, S.S. Normal variations of the position of the eye in the orbit. Ophthalmology. 1986, 93, 1072–1077. [Google Scholar] [CrossRef] [PubMed]
- Sung, Y.S.; Chung, C.M.; Hong, I.P. The correlation between the degree of enophthalmos and the extent of fracture in medial orbital wall fracture left untreated for over six months: a retrospective analysis of 81 cases at a single institution. Arch Plast Surg. 2013, 40, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Clauser, L.; Galie, M.; Pagliaro, F.; Tieghi, R. Posttraumatic enophthalmos: etiology, principles of reconstruction, and correction. J Craniofac Surg. 2008, 19, 351–359. [Google Scholar] [CrossRef]
- Gaziri, D.A.; Omizollo, G.; Luchi, G.H.; de Oliveira, M.G.; Heitz, C. Assessment for treatment of tripod fractures of the zygoma with microcompressive screws. J Oral Maxillofac Surg. 2012, 70, e378–e388. [Google Scholar] [CrossRef] [PubMed]
- Ogunmuyiwa, S.A.; Fatusi, O.A.; Ugboko, V.I.; Ayoola, O.O.; Maaji, S.M. The validity of ultrasonography in the diagnosis of zygomaticomaxillary complex fractures. Int J Oral Maxillofac Surg. 2012, 41, 500–505. [Google Scholar] [CrossRef]
- Ramli, N.; Kala, S.; Samsudin, A.; Rahmat, K.; Zainal Abidin, Z. Proptosis—correlation and agreement between Hertel exophthalmometry and computed tomography. Orbit. 2015, 34, 257–262. [Google Scholar] [CrossRef]
- Maheedhar, A.; Ravindran, C.; Azariah, E.D. Use of C-arm to assess reduction of zygomatic complex fractures: a comparative study. Craniomaxillofac Trauma Reconstr. 2017, 10, 35–43. [Google Scholar] [CrossRef]
- Delmas, J.; Loustau, J.M.; Martin, S.; Bourmault, L.; Adenis, J.P.; Robert, P.Y. Comparative study of 3 exophthalmometers and computed tomographic biometry. Eur J Ophthalmol. 2018, 28, 144–149. [Google Scholar] [CrossRef]
- Dohvoma, V.A.; Epe´e, E.; Mvogo, S.R.; Lietcheu, N.S.; Mvogo, C.E. Correlation between Hertel exophthalmometric value and refraction in young Cameroonian adults aged 20 to 40 years. Clin Ophthalmol 2016, 10, 1447. [Google Scholar] [CrossRef]
- Dunsky, I.L. Normative data for Hertel exophthalmometry in a normal adult black population. Optom Vis Sci. 1992, 69, 562–564. [Google Scholar] [CrossRef]
- Frueh, W.T.; Frueh, B.R. Errors of single-mirror or prism Hertel exophthalmometers and recommendations for minimizing the errors. Ophthalmic Plast Reconstr Surg. 2007, 23, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Sleep, T.J.; Manners, R.M. Interinstrument variability in Herteltype exophthalmometers. Ophthalmic Plast Reconstr Surg. 2002, 18, 254–257. [Google Scholar] [CrossRef]
- Kumari Sodhi, P.; Gupta, V.P.; Pandey, R.M. Exophthalmometric values in a normal Indian population. Orbit. 2001, 20, 1–9. [Google Scholar] [CrossRef]
- Knudtzon, K. On exophthalmometry: the result of 724 measurements with the Hertel exophthalmometer on normal adult individuals. Acta Psychiatr Scand 1949, 24, 523. [Google Scholar] [CrossRef]
- Omer, K.; Ozlem, B.S.; Karahan, E.; Mehmet, O.Z.; Murat, U. The effect of age, gender, refractive status and axial length on the measurements of Hertel exophthalmometry. Open Ophthalmol J 2015, 9, 113–115. [Google Scholar]
- Migliori, M.E.; Gladstone, G.J. Determination of the normal range of exophthalmometric values for black and white adults. Am J Ophthalmol. 1984, 98, 438–442. [Google Scholar] [CrossRef] [PubMed]
- Lam, A.K.; Lam, C.F.; Leung, W.K.; Hung, P.K. Intra-observer and inter-observer variation of Hertel exophthalmometry. Ophthalmic Physiol Opt. 2009, 29, 472–476. [Google Scholar] [CrossRef] [PubMed]
- Karwoski, B.A.; Killian, F.A.; Rosenberg, C.; Glavas, Y.P. Interobserver variability of Hertel exophthalmometry stratified by training experience. Invest Ophthalmol Vis Sci. 2009, 50, 4038. [Google Scholar]
- Musch, D.C.; Frueh, B.R.; Landis, J.R. The reliability of Hertel exophthalmometry: observer variation between physician and lay readers. Ophthalmology. 1985, 92, 1177–1180. [Google Scholar] [CrossRef]
© 2020 by the author. The Author(s) 2020.
Share and Cite
Jamal, R.F.; Azariah, E.; Pandyan, D.; Chinnaswami, R. Validation of Modified Hertel Exophthalmometer. Craniomaxillofac. Trauma Reconstr. 2021, 14, 174-182. https://doi.org/10.1177/1943387520954625
Jamal RF, Azariah E, Pandyan D, Chinnaswami R. Validation of Modified Hertel Exophthalmometer. Craniomaxillofacial Trauma & Reconstruction. 2021; 14(3):174-182. https://doi.org/10.1177/1943387520954625
Chicago/Turabian StyleJamal, Rizwana Fathima, Emmanuel Azariah, Deepak Pandyan, and Ravindran Chinnaswami. 2021. "Validation of Modified Hertel Exophthalmometer" Craniomaxillofacial Trauma & Reconstruction 14, no. 3: 174-182. https://doi.org/10.1177/1943387520954625
APA StyleJamal, R. F., Azariah, E., Pandyan, D., & Chinnaswami, R. (2021). Validation of Modified Hertel Exophthalmometer. Craniomaxillofacial Trauma & Reconstruction, 14(3), 174-182. https://doi.org/10.1177/1943387520954625