Fundamental Risk and Capital Structure Adjustment Speed: International Evidence
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials (Data and Variables)
2.1.1. Data
2.1.2. Variables
2.2. Model Specification and Estimation Methods
3. Results
3.1. Preliminary Evidence of SOA Heterogeneity Across Country Risk Profiles
3.2. Baseline Results
3.3. Robustness Test
3.4. Robustness to Unobserved Macroeconomic Forces
4. Discussion
5. Conclusions, Limitations, and Directions for Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Author | Main Factors Examined | Effect on SOA | Sample/Context | Methodology |
---|---|---|---|---|
(Liu et al., 2024) | Supplier concentration, bargaining power, agency costs | Higher supplier concentration increases SOA, especially for over-leveraged firms and those with more bargaining power. | Chinese A-share firms, 2012–2019 | Panel regression |
(Lemma & Negash, 2014) | Profitability, firm size, growth opportunities, macro/industry/institutional factors | Profitability increases SOA; size, growth, and macro/industry/institutional factors also relevant. | 986 firms, 9 African countries, 1999–2008 | System GMM |
(Alnori & Alqahtani, 2019) | Sharia compliance | Sharia-compliant firms have slower SOA due to financing restrictions. | Saudi non-financial firms, 2005–2016 | Panel regression |
(Baum et al., 2017) | Firm-specific risk, macroeconomic risk, leverage, financial status | SOA is asymmetric: faster for over-leveraged firms with low firm risk/high macro risk; risk factors are critical. | International sample | Dynamic panel models |
Q. Zhou et al. (2016) | Cost of equity sensitivity to leverage deviation | Higher sensitivity leads to faster SOA. | International sample | Panel regression |
(Liao et al., 2024) | Non-controlling large shareholders (NCLSs), agency costs, financing constraints | NCLSs increase SOA, especially in non-state firms; reduce agency costs and constraints. | Chinese A-share firms, 2010–2020 | Panel regression |
(Wang et al., 2021) | Positive tone in MD&A disclosure | True positive tone increases SOA. | Chinese listed firms | Textual analysis, panel regression |
(Z. Zhou & Wu, 2023) | Climate risk exposure, climate governance, policy quality | Higher climate risk exposure increases SOA, especially with strong governance and policy. | 35 countries, 2001–2021 | Two-step partial adjustment model |
(Touil & Mamoghli, 2020) | Institutional quality, profitability, non-debt tax savings, growth, size, volatility, political stability | Good institutions reinforce profitability’s effect on SOA, moderate others; political stability indirectly helps. | 506 MENA firms, 2006–2014 | Panel regression |
(Cook & Tang, 2010) | Macroeconomic states, financial constraints | SOA is faster in good macro states, regardless of constraints. | US firms | Dynamic partial adjustment models |
(Albanez & Schiozer, 2021) | Debt covenants, creditor rights, cross-listing | Covenants increase SOA in poor creditor rights environments; effect smaller for cross-listed firms. | Brazilian firms | Panel regression |
(Memon et al., 2020) | Firm size, profitability, stock market development, GDP | All increase SOA; adjustment period 1.45–2.25 years. | Pakistani non-financial firms, 2003–2012 | Difference GMM |
(R. Zhou & Li, 2024) | Fintech, information asymmetry, agency costs, competition | Fintech accelerates SOA via transparency, constraint alleviation, competition; effect stronger with low agency costs. | Chinese listed firms | Panel regression |
(Devos et al., 2017) | Debt covenants (capital vs. performance), financial constraints | Covenants lower SOA, especially strict capital covenants and for over-levered/constrained firms. | US firms | Panel regression |
(Su & Zheng, 2024) | Firm size, information asymmetry, law enforcement | SMEs adjust more slowly due to info asymmetry; law enforcement accelerates SOA. | Chinese SMEs, 2011–2021 | Panel regression |
(Warmana et al., 2020) | Growth potential, profitability, size, leverage deviation, short-term loan, asset maturity, GDP growth, inflation | All significant; SOA faster in Indonesia than developed countries. | Indonesian manufacturing firms | Partial adjustment model |
(Öztekin & Flannery, 2012) | Legal/financial traditions, institutional features | Better institutions increase SOA by lowering transaction costs. | Cross-country sample | Panel regression |
(Çolak et al., 2018) | Uncertainty, institutional quality, political system | High uncertainty slows SOA; strong institutions/presidential systems offset effect. | Global sample | Panel regression |
(Adeneye et al., 2022) | ESG score (environmental, social, governance) | Higher ESG increases SOA, especially the environmental pillar. | 116 ASEAN firms, 2012–2019 | OLS, system-GMM |
(Huang & Ritter, 2009) | Cost of equity, historical financing decisions | Firms adjust at moderate SOA; cost of equity influences adjustment. | US firms | Panel regression, new econometric technique |
(Naveed et al., 2015) | Past leverage, convergence rate, cost of being off-target | SOA is subject to a trade-off; pecking order pattern observed. | Pakistani firms | Two-step GMM, sensitivity analysis |
(Oino & Ukaegbu, 2015) | Profitability, asset structure, size, non-debt tax shield | Profitability/asset structure negatively, size/NDTS positively related to leverage; high SOA (47%). | Nigerian non-financial firms | Pool OLS, GMM |
(He & Kyaw, 2021) | Macroeconomic conditions, financial constraints, size, leverage deviation | SOA is faster in high growth states, for unconstrained/large/near-target firms. | Chinese firms | Dynamic partial adjustment models |
(Ho et al., 2021) | Corporate sustainability performance (CSP), info asymmetry, stakeholder engagement | Better CSP increases SOA, especially where institutions are weaker. | 31 countries, 2002–2018 | Panel regression |
(Cho et al., 2021) | Managerial ability, firm age/size, transaction costs | More capable managers slow SOA, especially in young/small firms. | International sample | Panel regression |
(Aybar-Arias et al., 2012) | Financial flexibility, growth, size, distance to optimal ratio | Flexibility, growth, size increase SOA; distance to optimal ratio decreases SOA. | Spanish SMEs, 1995–2005 | System GMM |
(Daskalakis et al., 2017) | Macroeconomic states, firm-specific variables, debt maturity | SOA for long-term debt slows in crisis; determinants differ by debt maturity. | SMEs, global financial crisis | Partial adjustment model |
(Öztekin, 2013) | Size, tangibility, industry leverage, profits, inflation, institutional quality | All are reliable determinants; high-quality institutions increase SOA. | 37 countries | Panel regression |
(Gustyana, 2023) | Distance, financial deficit/surplus | No significant effect on SOA in the health sector. | Indonesian health sector | GMM |
(Zou & Bai, 2022) | Dividend policy, financing strategy | Lower dividends increase SOA; high dividends slow SOA. | Chinese firms | Dynamic adjustment model |
(Morais et al., 2022) | Leverage status, financial system, macro conditions, constraints, flexibility | Leveraged firms have higher SOA; crisis and constraints affect SOA. | European listed firms, 1995–2016 | Dynamic panel fractional estimator |
(Ezeani et al., 2021) | Board characteristics, governance, country system | Board characteristics influence SOA; effect varies by country. | Japanese, French, German firms | Panel regression |
(Abdullah et al., 2023) | Profitability, growth, size, tangibility, NDTS, liquidity, financial distress | All impact SOA; weak financial position slows SOA. | Indian steel firms | GMM, Altman Z-score |
(Drobetz & Wanzenried, 2006) | Growth, distance to target, business cycle variables | Growth and distance increase SOA; higher term spread and good prospects increase SOA. | Swiss firms, 1991–2001 | Dynamic adjustment model |
(Botta & Colombo, 2022) | Firm, macro, institutional factors, market timing, pecking order | Interactions explain SOA heterogeneity; non-linear dynamics. | 52 countries | Panel regression |
(Pan et al., 2022) | Supply chain finance, firm size, region, bank connections, competition | SCF speeds up SOA, especially for under-leveraged, small, dynamic firms. | Chinese listed firms | Panel regression |
(Sunitha, 2024) | Country/firms characteristics, trade-off/pecking order/market timing | SOA varies by country/firms; trade-off theory best explains SOA. | GCC countries | Partial adjustment model |
(Haron et al., 2013) | Distance from target, size, profitability | Distance, size, and profitability increase SOA; under-adjustment observed. | Malaysian non-financial firms | Dynamic partial adjustment model |
(Kang et al., 2018) | Market imperfections, macro conditions, GDP growth | Worse imperfections slow SOA; SOA is procyclical with GDP growth. | Cross-country sample | Bootstrapping, panel regression |
(Dufour et al., 2017) | Cash flow, transaction costs, leverage status | Positive cash flow increases SOA for over-levered SMEs. | French SMEs, 2005–2014 | Two-step model |
(Buvanendra et al., 2017) | Firm-specific, governance, country differences | Determinants differ by country; both types matter. | Sri Lanka & India listed firms | Dynamic adjustment model |
(Botta, 2024) | National culture, firm/macroeconomic factors, agency costs | Culture affects SOA directly/indirectly; conformity increases SOA, individualism decreases. | International sample | Dynamic panel data |
(Miloud, 2022) | Corporate governance quality, leverage deviation | Strong governance increases SOA, especially for extreme deviations. | French listed firms | Panel regression |
(Rawal et al., 2024a) | Oil price Uncertainty, Firm financial condition | OPU increase the SOA of over levered firm and reduces the SOA of under levered firm | International data from 44 country | Two stage partial adjustment model |
(Rawal et al., 2024b) | Bankruptcy code, Firm financial condition | IBC have improved the SOA of Indian firm and the impact is stronger for over levered firm | India | Two stage partial adjustment model |
1 | Recent policy discussions suggest that corporate debt as a share of GDP increased significantly, in developed and emerging countries (Furceri et al., 2022). IMF reports 2015 suggest that due to the relative contributions of the firm- and country-specific characteristics, the corporate debt levels of nonfinancial firms in emerging economies have risen and quadrupled between 2004 and 2014. Moreover, total nonfinancial corporate debt (level and size) relative to GDP has increased since 2010 and has persistent in recent times (https://deloitte.wsj.com/cfo/is-rising-corporate-debt-a-problem-01629914216) (accessed on 10 March 2025). |
References
- Abdullah, M., Gulzar, I., Chaudhary, A., Tabash, M., Rashid, U., Naaz, I., & Ali, A. (2023). Dynamics of speed of leverage adjustment and financial distress in the Indian steel industry. Journal of Open Innovation: Technology, Market, and Complexity, 9, 100152. [Google Scholar] [CrossRef]
- Adeneye, Y., Kammoun, I., & Wahab, S. N. A. A. (2022). Capital structure and speed of adjustment: The impact of environmental, social and governance (ESG) performance. Sustainability Accounting, Management and Policy Journal, 14, 945–977. [Google Scholar] [CrossRef]
- Albanez, T., & Schiozer, R. (2021). The signaling role of covenants and the speed of capital structure adjustment under poor creditor rights: Evidence from domestically and cross-listed firms in Brazil. Journal of Multinational Financial Management, 63, 100704. [Google Scholar] [CrossRef]
- Alnori, F., & Alqahtani, F. (2019). Capital structure and speed of adjustment in non-financial firms: Does sharia compliance matter? Evidence from Saudi Arabia. Emerging Markets Review, 39, 50–67. [Google Scholar] [CrossRef]
- Alter, A., Arregui, N., Ichiue, H., Khadarina, O., Kikkawa, A. K., Kumarapathy, S., Narita, M., & Zhang, J. (2015). Corporate leverage in emerging markets—A concern? October. Available online: http://www.imf.org/external/pubs/ft/gfsr/2015/02/pdf/c3.pdf (accessed on 10 March 2025).
- Amini, S., Elmore, R., Öztekin, Ö., & Strauss, J. (2021). Can machines learn capital structure dynamics? Journal of Corporate Finance, 70, 102073. [Google Scholar] [CrossRef]
- An, Z., Chen, C., Li, D., & Yin, C. (2021). Foreign institutional ownership and the speed of leverage adjustment: International evidence. Journal of Corporate Finance, 68, 101966. [Google Scholar] [CrossRef]
- Aybar-Arias, C., Casino-Martínez, A., & López-Gracia, J. (2012). On the adjustment speed of SMEs to their optimal capital structure. Small Business Economics, 39, 977–996. [Google Scholar] [CrossRef]
- Baker, M. (2009). Capital market-driven corporate Finance. Annual Review of Financial Economics, 1(1), 181–205. [Google Scholar] [CrossRef]
- Baker, S. R., Bloom, N., & Davis, S. J. (2016). Measuring economic policy uncertainty. The Quarterly Journal of Economics, 131(4), 1593–1636. [Google Scholar] [CrossRef]
- Baum, C. F., Caglayan, M., & Rashid, A. (2017). Capital structure adjustments: Do macroeconomic and business risks matter? Empirical Economics, 53(4), 1463–1502. [Google Scholar] [CrossRef]
- Belkhir, M., Maghyereh, A., & Awartani, B. (2016). Institutions and corporate capital structure in the MENA region. Emerging Markets Review, 26, 99–129. [Google Scholar] [CrossRef]
- Botta, M. (2024). National culture and capital structure dynamics. Managerial Finance, 51(2), 353–373. [Google Scholar] [CrossRef]
- Botta, M., & Colombo, L. (2022). Non-linear capital structure dynamics. Journal of Business Finance & Accounting, 49(9–10), 1897–1928. [Google Scholar] [CrossRef]
- Buvanendra, S., Sridharan, P., & Thiyagarajan, S. (2017). Firm characteristics, corporate governance and capital structure adjustments: A comparative study of listed firms in Sri Lanka and India. IIMB Management Review, 29(4), 245–258. [Google Scholar] [CrossRef]
- Caldara, D. I. (2022). Measuring geopolitical risk. International Finance Discussion Papers, 2018.0(1222r1), 1–81. [Google Scholar] [CrossRef]
- Campello, M., Kankanhalli, G., & Kim, H. (2021). Delayed creative destruction: How uncertainty shapes corporate assets (NBER Working Paper No. 28971). National Bureau of Economic Research. [Google Scholar] [CrossRef]
- Cho, H., Choi, G.-Y., & Choi, S. (2021). Is managerial ability associated with capital structure adjustment speed? Asia-Pacific Journal of Financial Studies, 50(3), 308–333. [Google Scholar] [CrossRef]
- Cook, D. O., & Tang, T. (2010). Macroeconomic conditions and capital structure adjustment speed. Journal of Corporate Finance, 16(1), 73–87. [Google Scholar] [CrossRef]
- Çam, İ., & Özer, G. (2021). Institutional quality and corporate financing decisions around the world. North American Journal of Economics and Finance, 57, 1–23. [Google Scholar] [CrossRef]
- Çolak, G., Gungoraydinoglu, A., & Öztekin, Ö. (2018). Global leverage adjustments, uncertainty, and country institutional strength. Journal of Financial Intermediation, 35, 41–56. [Google Scholar] [CrossRef]
- Dang, V. A., Kim, M., & Shin, Y. (2012). Asymmetric capital structure adjustments: New evidence from dynamic panel threshold models. Journal of Empirical Finance, 19(4), 465–482. [Google Scholar] [CrossRef]
- Dantas, M. M., Merkley, K. J., & Silva, F. B. G. (2023). Government guarantees and banks’ income smoothing. Journal of Financial Services Research, 63(2), 123–173. [Google Scholar] [CrossRef]
- Daskalakis, N., Balios, D., & Dalla, V. (2017). The behaviour of SMEs’ capital structure determinants in different macroeconomic states. Journal of Corporate Finance, 46, 248–260. [Google Scholar] [CrossRef]
- Davis, S. J. (2016). An index of global economic policy uncertainty (NBER Working Paper No. 22740). National Bureau of Economic Research. [Google Scholar] [CrossRef]
- Demirgüç-Kunt, A., & Maksimovic, V. (1999). Institutions, financial markets, and firm debt maturity. Journal of Financial Economics, 54(3), 295–336. [Google Scholar] [CrossRef]
- Devos, E., Rahman, S., & Tsang, D. (2017). Debt covenants and the speed of capital structure adjustment. Journal of Corporate Finance, 45, 1–18. [Google Scholar] [CrossRef]
- Do, T. K., Lai, T. N., & Tran, T. T. C. (2020). Foreign ownership and capital structure dynamics. Finance Research Letters, 36(566), 101337. [Google Scholar] [CrossRef]
- Drobetz, W., & Wanzenried, G. (2006). What determines the speed of adjustment to the target capital structure? Applied Financial Economics, 16, 941–958. [Google Scholar] [CrossRef]
- Dufour, D., Luu, P., & Teller, P. (2017). The influence of cash flow on the speed of adjustment to the optimal capital structure. Research in International Business and Finance, 45, 62–71. [Google Scholar] [CrossRef]
- Ezeani, E., Salem, R., Kwabi, F., Boutaine, K., Bilal, & Komal, B. (2021). Board monitoring and capital structure dynamics: Evidence from bank-based economies. Review of Quantitative Finance and Accounting, 58, 473–498. [Google Scholar] [CrossRef]
- Faulkender, M., Flannery, M. J., Hankins, K. W., & Smith, J. M. (2012). Cash flows and leverage adjustments. Journal of Financial Economics, 103(3), 632–646. [Google Scholar] [CrossRef]
- Fisher, E. O., Heinkel, R., & Zechner, J. (1989). Dynamic capital structure choice: Theory and tests. The Journal of Finance, 44(1), 19–40. [Google Scholar] [CrossRef]
- Flannery, M. J., & Rangan, K. P. (2006). Partial adjustment toward target capital structures. Journal of Financial Economics, 79(3), 469–506. [Google Scholar] [CrossRef]
- Frank, M. Z., & Goyal, V. K. (2009). Capital structure decisions: Which factors are reliably important? Financial Management, 38(1), 1–37. [Google Scholar] [CrossRef]
- Funke, M., Schularick, M., & Trebesch, C. (2023). Populist leaders and the economy. American Economic Review, 113(12), 3249–3288. [Google Scholar] [CrossRef]
- Furceri, D., Hannan, S., Estefania-Flores, J., Ostry, J., & Rose, A. (2022). A measurement of aggregate trade restrictions and their economic effects. IMF Working Papers, 2022(001), 1. [Google Scholar] [CrossRef]
- Goodell, J. W., & Goyal, A. (2018). What determines debt structure in emerging markets: Transaction costs or public monitoring? International Review of Financial Analysis, 55, 184–195. [Google Scholar] [CrossRef]
- Graham, J. R., & Leary, M. T. (2011). A Review of Empirical Capital Structure Research and Directions for the Future (April 7, 2011) (Vol. 3). Annual Review of Financial Economics. [Google Scholar] [CrossRef]
- Gustyana, T. (2023, September 13–15). Capital structure adjustment speed in Indonesia health sector companies. Proceedings of the International Conference on Industrial Engineering and Operations Management, Johor Bahru, Malaysia. [Google Scholar] [CrossRef]
- Gyöngyösi, G., & Verner, E. (2022). Financial crisis, creditor-debtor conflict, and populism. The Journal of Finance, 77(4), 2471–2523. [Google Scholar] [CrossRef]
- Haron, R., Ibrahim, K., Nor, F., & Ibrahim, I. (2013). Factors affecting speed of adjustment to target leverage: Malaysia evidence. Global Business Review, 14, 243–262. [Google Scholar] [CrossRef]
- He, W., Hu, M. R., Mi, L., & Yu, J. (2021). How stable are corporate capital structures? International evidence. Journal of Banking and Finance, 126, 106103. [Google Scholar] [CrossRef]
- He, W., & Kyaw, N. (2021). Macroeconomic risks and capital structure adjustment speed: The Chinese evidence. International Journal of Finance & Economics. [Google Scholar] [CrossRef]
- Ho, L., Bai, M., Lu, Y., & Qin, Y. (2021). The effect of corporate sustainability performance on leverage adjustments. The British Accounting Review, 53, 100989. [Google Scholar] [CrossRef]
- Huang, R., & Ritter, J. (2009). Testing theories of capital structure and estimating the speed of adjustment. Journal of Financial and Quantitative Analysis, 44, 237–271. [Google Scholar] [CrossRef]
- Kang, M., Wang, W., & Xiao, Y. (2018). Market imperfections, macroeconomic conditions, and capital structure dynamics: A cross-country study. Emerging Markets Finance and Trade, 54(1), 234–254. [Google Scholar] [CrossRef]
- Karolyi, G. A. (2015). Cracking the emerging markets Enigma. In Cracking the emerging markets Enigma. Oxford University Press. [Google Scholar] [CrossRef]
- Kim, T. N., & Xie, Y. (2023). Off-balance sheet disclosure and leverage adjustment speed. Finance Research Letters, 51, 103346. [Google Scholar] [CrossRef]
- Lemma, T. T., & Negash, M. (2014). Determinants of the adjustment speed of capital structure: Evidence from developing economies. Journal of Applied Accounting Research, 15(1), 64–99. [Google Scholar] [CrossRef]
- Lemmon, M. L., Roberts, M. R., & Zender, J. F. (2008). Back to the beginning: Persistence and the cross-section of corporate capital structure. Journal of Finance, 63(4), 1575–1608. [Google Scholar] [CrossRef]
- Li, S., Hoque, H., & Liu, J. (2023). Investor sentiment and firm capital structure. Journal of Corporate Finance, 80, 102426. [Google Scholar] [CrossRef]
- Liao, J., Zhan, Y., Yuan, Y., & Xu, A. (2024). Non-controlling large shareholders and dynamic capital structure adjustment in China. PLoS ONE, 19, e0307066. [Google Scholar] [CrossRef]
- Liu, Y., Wu, K., Ruan, S., & Kassar, M. (2024). Supplier concentration and the speed of capital structure adjustment. Pacific-Basin Finance Journal, 85, 102328. [Google Scholar] [CrossRef]
- Memon, P., Md-Rus, R., & Ghazali, Z. (2020). Adjustment speed towards target capital structure and its determinants. Economic Research-Ekonomska Istraživanja, 34, 1966–1984. [Google Scholar] [CrossRef]
- Miloud, T. (2022). Corporate governance and the capital structure behavior: Empirical evidence from France. Managerial Finance, 48(6), 853–878. [Google Scholar] [CrossRef]
- Modigliani, F., & Miller, M. H. (1958). The American economic review. American Economic Review, 103(6), i–viii. [Google Scholar] [CrossRef]
- Morais, F., Serrasqueiro, Z., & Ramalho, J. (2022). Capital structure speed of adjustment heterogeneity across zero leverage and leveraged European firms. Research in International Business and Finance, 62, 101682. [Google Scholar] [CrossRef]
- Naveed, M., Ramakrishnan, S., Anuar, M., & Mirzaei, M. (2015). Factors affecting speed of adjustment under different economic conditions: Dynamic capital structure sensitivity analysis. Journal of Chinese Economic and Foreign Trade Studies, 8, 165–182. [Google Scholar] [CrossRef]
- North, D. C. (1990). Institutions, institutional change and economic performance. In Institutions, institutional change and economic performance. Cambridge University Press. [Google Scholar] [CrossRef]
- Oino, I., & Ukaegbu, B. (2015). The impact of profitability on capital structure and speed of adjustment: An empirical examination of selected firms in Nigerian Stock Exchange. Research in International Business and Finance, 35, 111–121. [Google Scholar] [CrossRef]
- Oster, E. (2019). Unobservable selection and coefficient stability: Theory and evidence. Journal of Business & Economic Statistics, 37(2), 187–204. [Google Scholar] [CrossRef]
- Öztekin, Ö. (2015). Capital structure decisions around the world: Which factors are reliably important? Journal of Financial and Quantitative Analysis, 50(3), 301–323. [Google Scholar] [CrossRef]
- Öztekin, Ö., & Flannery, M. J. (2012). Institutional determinants of capital structure adjustment speeds. Journal of Financial Economics, 103(1), 88–112. [Google Scholar] [CrossRef]
- Pagan, A. (1984). Econometric Issues in the Analysis of Regressions with Generated Regressors. International Economic Review, 25(1), 221–247. [Google Scholar] [CrossRef]
- Pan, A., Xu, L., Li, B., Ling, R., & Zheng, L. (2022). The impact of supply chain finance on firm capital structure adjustment: Evidence from China. Australian Journal of Management, 48, 436–462. [Google Scholar] [CrossRef]
- Rajan, R. G., & Zingales, L. (1995). What do we know about capital structure? Some evidence from international data. The Journal of Finance, 50(5), 1421–1460. [Google Scholar] [CrossRef]
- Rawal, D., Dash, S. R., & Mahakud, J. (2024a). Oil price uncertainty and capital structure speed of adjustment: International evidence. Applied Economics, 00(00), 1–22. [Google Scholar] [CrossRef]
- Rawal, D., Mahakud, J., & Mishra, R. K. (2024b). Do stronger creditors’ rights and an efficient bankruptcy process affect the speed of adjustment to target capital structure? Evidence from a quasi-natural experiment. Cogent Economics and Finance, 12(1), 2394490. [Google Scholar] [CrossRef]
- Silva, F. B. G., & Volkova, E. (2018). Can VPIN forecast geopolitical events? Evidence from the 2014 Crimean Crisis. Annals of Finance, 14(1), 125–141. [Google Scholar] [CrossRef]
- Smith, G. P. (2022). Predicting the debt-equity decision. Finance Research Letters, 48, 102859. [Google Scholar] [CrossRef]
- Su, X., & Zheng, Y. (2024). Capital structure adjustment speed and legal environments: Evidence from SMEs. Finance Research Letters. [Google Scholar] [CrossRef]
- Sunitha, K. (2024). Targeting behavior and capital structure theories: An empirical analysis of gulf cooperation council countries. Journal of Behavioral and Experimental Finance, 43, 100944. [Google Scholar] [CrossRef]
- Tan, K. J. K., Zhou, Q., Pan, Z., & Faff, R. (2021). Business shocks and corporate leverage. Journal of Banking and Finance, 131, 106208. [Google Scholar] [CrossRef]
- Touil, M., & Mamoghli, C. (2020). Institutional environment and determinants of adjustment speed to the target capital structure in the MENA region. Borsa Istanbul Review, 20(2), 121–143. [Google Scholar] [CrossRef]
- Wang, Q., Wu, D., & Yan, L. (2021). Effect of positive tone in MD&A disclosure on capital structure adjustment speed: Evidence from China. Accounting & Finance, 61(S1), 5809–5845. [Google Scholar] [CrossRef]
- Warmana, G. O., Rahyuda, I. K., Purbawangsa, I. B. A., & Sujana, I. W. (2020). Investigating capital structure speed of adjustment (SOA) of Indonesian companies for corporate value. Global Journal of Flexible Systems Management, 21(3), 215–231. [Google Scholar] [CrossRef]
- Zhou, Q., Tan, K. J. K., Faff, R., & Zhu, Y. (2016). Deviation from target capital structure, cost of equity and speed of adjustment. Journal of Corporate Finance, 39, 99–120. [Google Scholar] [CrossRef]
- Zhou, R., & Li, J. (2024). Fintech and dynamic adjustment of capital structure. Finance Research Letters, 67(Part A), 105853. [Google Scholar] [CrossRef]
- Zhou, Z., & Wu, K. (2023). Does climate risk exposure affect corporate leverage adjustment speed? International evidence. Journal of Cleaner Production, 389, 136036. [Google Scholar] [CrossRef]
- Zou, Y., & Bai, Q. (2022). The impact of dividend policies and financing strategies on the speed of firms’ capital structure adjustment. Discrete Dynamics in Nature and Society, 2022, 3209502. [Google Scholar] [CrossRef]
Country Name | No of Firms | No. of Observation | Book Leverage | Market Leverage | Market Capacity | Operational Efficiency | Foreign Accessibility | Corporate Transparency | Political Stability | Fundamental Risk |
---|---|---|---|---|---|---|---|---|---|---|
Austria | 43 | 573 | 0.33 | 0.30 | −0.34 | 0.27 | 0.95 | −0.05 | 1.11 | 0.74 |
Belgium | 75 | 629 | 0.35 | 0.31 | −0.21 | 0.52 | 1.13 | −0.03 | 1.04 | 1.09 |
Brazil | 113 | 1135 | 0.35 | 0.38 | −0.40 | −0.24 | −0.96 | 0.37 | −0.39 | −0.71 |
Canada | 488 | 4639 | 0.24 | 0.20 | 1.49 | 1.08 | 0.40 | 1.80 | 2.98 | 3.04 |
Chile | 88 | 1087 | 0.28 | 0.34 | −0.12 | −1.96 | 0.15 | 0.38 | 0.39 | −0.36 |
China | 2666 | 22,165 | 0.29 | 0.17 | −0.05 | −0.45 | −1.64 | −0.85 | −1.51 | −2.22 |
Colombia | 16 | 120 | 0.18 | 0.14 | −0.79 | −0.98 | −0.98 | −1.99 | −2.70 | −2.16 |
Denmark | 61 | 762 | 0.29 | 0.25 | 1.05 | 0.97 | 0.63 | 0.18 | 1.46 | 1.95 |
Egypt | 89 | 788 | 0.23 | 0.21 | −0.73 | −1.15 | 0.15 | −0.27 | −1.58 | −2.01 |
Finland | 87 | 1031 | 0.32 | 0.28 | 0.12 | 1.28 | 0.27 | 1.04 | 1.50 | 1.82 |
France | 249 | 3039 | 0.33 | 0.27 | 0.12 | 1.08 | 0.98 | 1.42 | 0.43 | 1.64 |
Germany | 350 | 4089 | 0.29 | 0.24 | −0.13 | 0.94 | 0.45 | 0.70 | 1.04 | 1.26 |
Greece | 101 | 1319 | 0.37 | 0.43 | −0.12 | 0.60 | 0.86 | −1.38 | −0.21 | −0.64 |
Hong Kong | 709 | 8003 | 0.21 | 0.26 | 4.35 | 0.34 | 0.44 | 0.72 | 1.11 | 3.69 |
Hungary | 11 | 121 | 0.27 | 0.26 | −0.71 | 0.59 | 0.39 | −0.09 | 0.09 | −0.30 |
India | 1590 | 13,282 | 0.34 | 0.34 | −0.58 | 0.01 | −1.86 | −1.04 | −0.86 | −1.62 |
Indonesia | 315 | 3248 | 0.32 | 0.30 | −0.99 | 0.06 | −0.79 | −0.80 | −0.92 | 1.63 |
Ireland | 41 | 395 | 0.33 | 0.21 | 0.20 | 1.10 | 2.00 | 1.26 | 1.10 | 2.84 |
Israel | 243 | 2302 | 0.40 | 0.37 | 0.40 | −0.51 | 0.08 | 0.06 | 0.35 | 0.80 |
Italy | 128 | 1389 | 0.39 | 0.34 | −0.12 | −0.50 | 0.93 | 0.26 | −0.15 | 0.46 |
Japan | 2640 | 33,284 | 0.29 | 0.30 | 1.60 | −0.91 | 0.54 | −0.87 | 0.55 | 0.64 |
S. Korea | 1504 | 16,536 | 0.28 | 0.31 | 0.67 | 0.02 | −0.16 | −1.89 | 0.02 | −0.43 |
Malaysia | 595 | 7461 | 0.23 | 0.26 | 0.58 | −0.48 | −1.48 | 0.77 | −0.29 | 0.35 |
Mexico | 83 | 955 | 0.30 | 0.27 | −0.98 | −0.24 | −0.27 | 0.75 | −0.75 | −0.99 |
Netherlands | 60 | 749 | 0.37 | 0.29 | 0.50 | −0.22 | 1.70 | 0.97 | 1.37 | 1.70 |
New Zealand | 68 | 691 | 0.26 | 0.19 | −0.11 | 0.29 | 0.12 | 1.09 | 1.23 | 1.97 |
Norway | 76 | 793 | 0.37 | 0.34 | −0.10 | 0.43 | 0.79 | 0.88 | 1.29 | 1.51 |
Peru | 51 | 639 | 0.28 | 0.46 | −1.00 | −1.05 | 0.99 | −0.21 | −0.76 | −1.05 |
Philippines | 151 | 1182 | 0.22 | 0.21 | −0.23 | −0.42 | −1.03 | −0.85 | −0.92 | −2.09 |
Poland | 286 | 1801 | 0.22 | 0.20 | −0.64 | 0.23 | −1.20 | −0.12 | 0.19 | −0.59 |
Portugal | 19 | 255 | 0.52 | 0.45 | −0.08 | 0.78 | 0.83 | −0.53 | 0.47 | 0.52 |
Russia | 76 | 444 | 0.38 | 0.35 | −0.80 | 0.28 | −0.57 | −1.28 | −1.14 | −1.73 |
Saudi Arabia | 107 | 968 | 0.23 | 0.15 | −0.60 | −0.46 | −0.26 | −0.06 | −1.27 | −1.22 |
Singapore | 347 | 3778 | 0.25 | 0.27 | 1.22 | 0.77 | 0.16 | 0.84 | 0.72 | 2.36 |
South Africa | 129 | 1535 | 0.27 | 0.21 | 0.61 | −0.11 | −0.40 | 1.36 | −0.20 | 1.01 |
Spain | 83 | 817 | 0.42 | 0.31 | 1.09 | 0.48 | 0.89 | 0.97 | 0.37 | 1.51 |
Sweden | 291 | 2504 | 0.25 | 0.21 | 0.49 | 1.11 | 0.90 | 1.02 | 1.34 | 20.12 |
Switzerland | 131 | 1712 | 0.27 | 0.22 | 1.20 | 0.81 | 0.79 | 0.67 | 1.45 | 1.81 |
Thailand | 446 | 4758 | 0.27 | 0.25 | −0.02 | 0.34 | −1.35 | −0.73 | −0.98 | −1.03 |
Turkey | 238 | 2405 | 0.25 | 0.21 | −0.73 | −1.61 | −0.44 | −1.22 | −0.66 | −2.11 |
UAE | 47 | 330 | 0.24 | 0.25 | −0.61 | −1.11 | −0.50 | 0.36 | −0.06 | −1.07 |
UK | 532 | 5729 | 0.24 | 0.19 | 0.97 | 1.80 | 0.95 | 1.58 | 0.75 | 3.22 |
USA | 1582 | 18,127 | 0.24 | 0.17 | 1.42 | 2.14 | 0.11 | 1.21 | 0.49 | 2.87 |
Total | 17,747 | 184,792 |
Variable | Variable Description | Variable Measurement |
---|---|---|
>BLEV | >Book leverage | >Total debt/(total debt + book value of equity) |
>MLEV | >Market leverage | >Total debt/(total debt + market value of equity) |
BDEV | >Book leverage deviation | >Deviation of book leverage from the target book leverage |
MDEV | >Market leverage deviation | >Deviation of market leverage from target market leverage |
PROF | >Profitability | >Ratio of operating income before depreciation to total assets |
TANG | >Tangibility | >Ratio of net property, plant, and equipment to total assets |
MTB | >Market-to-Book | >Ratio of total assets minus book equity plus market capitalisation to total assets |
SIZE | >Size | >Natural logarithm of total assets |
BLEV_IND | >Industry book leverage | >Median book leverage ratio by country, industry, and year |
MLEV_IND | >Industry market leverage | >Median book leverage ratio by country, industry, and year |
RDEXP | R&D expense | >Ratio of R&D expenses to total assets, where missing R&D values are equal to zero |
RD_DUM | >R&D dummy | >Dummy variable equals one if R&D expenses are not reported; otherwise, it is zero |
DEP | >Depreciation | >Captures non-debt tax shields measured by depreciation and amortisation divided by the book value of total assets |
>OL | >Over leveraged | >Dummy variable equals one if the observed leverage ratio is higher than the target leverage; otherwise, it is zero |
FC | Financial constraint | >Dummy variable equals one if the cash flow from the operation is negative; otherwise, it is zero |
>GDPG | >GDP growth | >Rate of change in the gross domestic product (annual%) |
>INF | >Inflation | >Rate of inflation |
>MC | >High market capacity | >Dummy variable equals one if the observed score in the market capacity index is higher than the median score in that year for the sample; otherwise, it is zero |
>OE | >High operational efficiency | >The dummy variable equals one if the observed score in the Operational Efficiency index is higher than the median score in that year for the sample; otherwise, it is zero. |
>FA | >High foreign accessibility | >The dummy variable equals one if the observed score in the foreign accessibility index is higher than the median score in that year for the sample; otherwise, it is zero |
>CT | >High corporate transparency | >The dummy variable equals one if the observed corporate transparency index score is higher than the sample median score in that year; otherwise, it is zero |
>PS | >High political stability | >Dummy variable equals one if the observed score in the political stability index is higher than the median score in that year for the sample; otherwise, it is zero |
>Frisk | >Low fundamental risk | >Dummy variable equals one if the observed score in the fundamental risk index is higher than the median score in that year for the sample; otherwise, it is zero (Higher value in the index means lower risk) |
Variables | Mean | Std Dev | Minimum | Maximum |
---|---|---|---|---|
BLEV | 0.28 | 0.232 | 0 | 0.85 |
MLEV | 0.26 | 0.249 | 0 | 0.90 |
BDEV | 0.01 | 0.112 | −0.847 | 0.733 |
MDEV | 0.01 | 0.122 | −0.896 | 0.814 |
PROF | 0.08 | 0.112 | −0.496 | 0.369 |
TANG | 0.35 | 0.238 | 0.001 | 0.936 |
MTB | 1.68 | 1.69 | 0.375 | 12.33 |
SIZE | 19.23 | 1.95 | 14.78 | 24.41 |
BLEV_IND | 0.26 | 0.15 | 0 | 1 |
MLEV_IND | 0.23 | 0.18 | 0 | 1 |
RDEXP | 0.01 | 0.074 | −0.13 | 11.84 |
RD_DUM | 0.27 | 0.45 | 0 | 1 |
DEP | 0.03 | 0.03 | 0.0001 | 0.1458 |
OL | 0.44 | 0.497 | 0 | 1 |
FC | 0.20 | 0.402 | 0 | 1 |
GDPG | 3.71 | 3.44 | −10.14 | 25.17 |
INF | 2.55 | 2.92 | −4.47 | 44.96 |
MC | 0.47 | 0.49 | 0 | 1 |
OE | 0.48 | 0.50 | 0 | 1 |
FA | 0.45 | 0.50 | 0 | 1 |
CT | 0.47 | 0.49 | 0 | 1 |
PS | 0.44 | 0.50 | 0 | 1 |
Frisk | 0.40 | 0.49 | 0 | 1 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) |
---|---|---|---|---|---|---|---|---|---|---|---|
(1) BLEV | 1.000 | ||||||||||
(2) MLEV | 0.800 | 1.000 | |||||||||
(3) PROF | −0.005 | −0.074 | 1.000 | ||||||||
(4) DEP | 0.068 | 0.016 | 0.246 | 1.000 | |||||||
(5) TANG | 0.043 | 0.059 | 0.027 | 0.189 | 1.000 | ||||||
(6) MTB | −0.170 | −0.379 | 0.044 | 0.015 | −0.024 | 1.000 | |||||
(7) SIZE | 0.296 | 0.202 | 0.242 | 0.020 | −0.050 | −0.109 | 1.000 | ||||
(8) BLEV_IND | 0.513 | 0.453 | 0.100 | 0.017 | −0.007 | −0.167 | 0.247 | 1.000 | |||
(9) MLEV_IND | 0.417 | 0.571 | 0.026 | −0.027 | 0.012 | −0.315 | 0.156 | 0.788 | 1.000 | ||
(10) RD | −0.107 | −0.114 | −0.291 | 0.018 | 0.036 | 0.130 | −0.099 | −0.162 | −0.141 | 1.000 | |
(11) RD_DUM | −0.109 | −0.113 | −0.113 | 0.027 | −0.006 | 0.073 | 0.058 | −0.192 | −0.150 | 0.280 | 1.000 |
Risk Dimension | Group | Avg. SOA | Significant Difference (High vs. Low) |
---|---|---|---|
Fundamental risk | High | 38% | −7% *** |
Low | 45% | ||
Market capacity | High | 41% | 1% * |
Low | 40% | ||
Operational efficiency | High | 44% | 7% *** |
Low | 37% | ||
Foreign accessibility | High | 41% | 0% |
Low | 41% | ||
Corporate transparency | High | 44% | 6% *** |
Low | 38% | ||
Political stability | High | 43% | 3% *** |
Low | 40% |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
BDEV | 0.2942 *** (35.51) | 0.2904 *** (34.64) | 0.3263 *** (40.20) | 0.2923 *** (45.03) | 0.3102 *** (48.63) | 0.3422 *** (35.90) |
Frisk * BDEV | 0.0742 *** (10.49) | |||||
OE * BDEV | 0.0734 *** (12.46) | |||||
FA * BDEV | 0.0187 ** (2.41) | |||||
CT * BDEV | 0.0727 *** (10.05) | |||||
PS * BDEV | 0.0449 *** (6.85) | |||||
MC * BDEV | 0.0034 (0.44) | |||||
FC * BDEV | 0.0680 *** (8.27) | 0.0655 *** (7.93) | 0.0709 *** (8.92) | 0.0682 *** (8.79) | 0.0693 *** (8.74) | 0.0714 *** (9.22) |
OL * BDEV | 0.0700 *** (6.88) | 0.0715 *** (6.92) | 0.0733 *** (9.18) | 0.0703 *** (8.97) | 0.0715 *** (8.12) | 0.0740 *** (9.28) |
GDPG * BDEV | 0.0039 *** (4.01) | 0.0034 *** (3.61) | 0.0013 * (1.69) | 0.0035 *** (3.43) | 0.0026 *** (2.39) | 0.0001 (0.17) |
INF * BDEV | 0.0050 *** (4.93) | 0.004 *** (4.30) | 0.0046 *** (3.85) | 0.0045 *** (5.30) | 0.0051 *** (4.78) | 0.0036 *** (3.69) |
Constant | 0.0026 (0.84) | 0.0029 (1.18) | 0.0029 (0.99) | 0.0026 (0.86) | 0.0027 (1.02) | 0.0029 (0.96) |
Country FE | Yes | Yes | Yes | Yes | Yes | Yes |
Industry FE | Yes | Yes | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes | Yes | Yes |
Adj. | 0.2247 | 0.225 | 0.224 | 0.225 | 0.224 | 0.22 |
N | 184,792 | 184,792 | 184,792 | 184,792 | 184,792 | 184,792 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
MDEV | 0.3396 *** (47.60) | 0.3432 *** (50.98) | 0.3474 *** (36.45) | 0.3482 *** (51.74) | 0.3500 *** (57.12) | 0.3658 *** (35.77) |
Frisk MDEV | 0.0318 *** (5.41) | |||||
OE * MDEV | 0.0221 *** (4.07) | |||||
FA * MDEV | 0.0126 * (1.66) | |||||
CT * MDEV | 0.0145 ** (2.26) | |||||
PS * MDEV | 0.0114 * (1.63) | |||||
MC * MDEV | 0.0112 (1.46) | |||||
FC * MDEV | 0.0269 *** (3.45) | 0.0267 *** (4.48) | 0.0278 *** (3.91) | 0.0275 *** (4.02) | 0.0276 *** (3.94) | 0.0284 *** (3.88) |
OL * MDEV | 0.1145 *** (14.20) | 0.1151 *** (12.74) | 0.1171 *** (16.26) | 0.1152 *** (13.10) | 0.1151 *** (15.40) | 0.1156 *** (11.97) |
GDPG * MDEV | 0.0059 *** (5.93) | 0.0054 *** (5.27) | 0.0053 *** (4.45) | 0.0052 *** (6.15) | 0.0052 *** (4.52) | 0.0042 *** (5.03) |
INF * MDEV | 0.0135 *** (14.56) | 0.0132 *** (12.15) | 0.0135 *** (11.08) | 0.0131 *** (13.85) | 0.0132 *** (10.08) | 0.0122 *** (9.17) |
Constant | 0.0087 *** (3.21) | 0.0088 *** (3.16) | 0.0088 *** (3.44) | 0.0088 *** (2.74) | 0.0088 *** (3.81) | 0.0088 *** (2.93) |
Country FE | Yes | Yes | Yes | Yes | Yes | Yes |
Industry FE | Yes | Yes | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes | Yes | Yes |
Adj. | 0.3314 | 0.3317 | 0.3312 | 0.3312 | 0.3312 | 0.3312 |
N | 184,792 | 184,792 | 184,792 | 184,792 | 184,792 | 184,792 |
(1) | (2) | (3) | (4) | (5) | (6) | |
BDEV | 0.517 4 *** (89.29) | 0.5082 *** (75.87) | 0.6153 *** (102.80) | 0.5040 *** (71.72) | 0.5665 *** (77.58) | 0.6466 *** (72.30) |
Frisk * BDEV | 0.1636 *** (37.06) | |||||
OE * BDEV | 0.1676 *** (29.25) | |||||
FA * BDEV | 0.0088 * (1.66) | |||||
CT * BDEV | 0.1776 *** (29.89) | |||||
PS * BDEV | 0.0761 *** (11.63) | |||||
MC * BDEV | 0.0113 (1.47) | |||||
FC * BDEV | 0.1339 *** (28.80) | 0.1267 *** (19.21) | 0.1449 *** (22.33) | 0.1337 *** (23.03) | 0.1412 *** (25.62) | 0.1463 *** (22.93) |
OL * BDEV | 0.1837 *** (22.99) | 0.1821 *** (19.33) | 0.1798 *** (20.24) | 0.1832 *** (18.39) | 0.1830 *** (23.68) | 0.1775 *** (17.91) |
GDPG * BDEV | 0.0132 *** (15.73) | 0.0122 *** (16.23) | 0.0061 *** (8.12) | 0.0129 *** (18.04) | 0.0095 *** (10.72) | 0.0044 *** (4.64) |
Inf * BDEV | 0.0070 *** (8.12) | 0.0061 *** (6.69) | 0.0048 *** (6.29) | 0.0061 *** (8.31) | 0.0069 *** (8.97) | 0.0031 *** (3.34) |
Constant | −0.0059 *** (−2.71) | −0.0055 *** (−2.82) | −0.0057 *** (−3.39) | −0.0058 *** (−3.60) | −0.005 *** (−3.26) | −0.005 *** (−3.08) |
Country FE | Yes | Yes | Yes | Yes | Yes | Yes |
Industry FE | Yes | Yes | Yes | Yes | Yes | Yes |
Adj. | 0.63 | 0.63 | 0.62 | 0.63 | 0.63 | 0.62 |
N | 184,792 | 184,792 | 184,792 | 184,792 | 184,792 | 184,792 |
Panel (B): Dependent Variable: | ||||||
MDEV | 0.6284 *** (115.04) | 0.6278 *** (123.04) | 0.6968 *** (108.62) | 0.6208 *** (131.78) | 0.6733 *** (110.65) | 0.7172 *** (104.23) |
Frisk * MDEV | 0.1093 *** (24.33) | |||||
OE * MDEV | 0.0977 *** (23.41) | |||||
FA * MDEV | 0.0281 * (1.61) | |||||
CT * MDEV | 0.1141 *** (24.23) | |||||
PS * MDEV | 0.0240 *** (5.20) | |||||
MC * MDEV | 0.0351 *** (5.95) | |||||
FC * MDEV | 0.0595 *** (11.72) | 0.0567 *** (9.96) | 0.0654 *** (14.23) | 0.0591 *** (11.05) | 0.0643 *** (12.50) | 0.0665 *** (14.09) |
OL * MDEV | 0.1710 *** (22.57) | 0.1714 *** (23.72) | 0.1715 *** (23.56) | 0.1697 *** (21.85) | 0.1712 *** (23.74) | 0.1701 *** (24.54) |
GDPG * MDEV | 0.0147 *** (29.83) | 0.0136 *** (25.40) | 0.0104 *** (14.36) | 0.0143 *** (27.00) | 0.0119 *** (19.43) | 0.0093 *** (18.35) |
Inf * MDEV | 0.0150 *** (21.09) | 0.0143 *** (21.07) | 0.0117 *** (15.13) | 0.0145 *** (20.11) | 0.0133 *** (15.94) | 0.0102 *** (11.42) |
Constant | −0.0043 *** (−3.19) | −0.004 *** (−2.50) | −0.0042 ** (−2.41) | −0.0042 ** (−2.40) | −0.004 ** (−2.07) | −0.004 *** (−2.32) |
Country FE | Yes | Yes | Yes | Yes | Yes | Yes |
Industry FE | Yes | Yes | Yes | Yes | Yes | Yes |
Adj. | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 |
N | 184,792 | 184,792 | 184,792 | 184,792 | 184,792 | 184,792 |
Base Model | Model with all Controlled | R2 Max | Bounded Value | |||||
---|---|---|---|---|---|---|---|---|
Outcome | 2 | 2 | = 1.3 | = 2 | ||||
Frisk coefficient | 0.0711 | 0.2235 | 0.0650 | 0.4200 | 0.546 | 0.8400 | 0.0611 | 0.0520 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rawal, D.; Mahakud, J.; Achary, L.M.R. Fundamental Risk and Capital Structure Adjustment Speed: International Evidence. J. Risk Financial Manag. 2025, 18, 468. https://doi.org/10.3390/jrfm18080468
Rawal D, Mahakud J, Achary LMR. Fundamental Risk and Capital Structure Adjustment Speed: International Evidence. Journal of Risk and Financial Management. 2025; 18(8):468. https://doi.org/10.3390/jrfm18080468
Chicago/Turabian StyleRawal, Dilesh, Jitendra Mahakud, and L Maheswar Rao Achary. 2025. "Fundamental Risk and Capital Structure Adjustment Speed: International Evidence" Journal of Risk and Financial Management 18, no. 8: 468. https://doi.org/10.3390/jrfm18080468
APA StyleRawal, D., Mahakud, J., & Achary, L. M. R. (2025). Fundamental Risk and Capital Structure Adjustment Speed: International Evidence. Journal of Risk and Financial Management, 18(8), 468. https://doi.org/10.3390/jrfm18080468