Does Fiscal Decentralization Drive CO2 Emissions? A Quantile Regression Analysis
Abstract
:1. Introduction
2. Literature Review
2.1. Theorical Review
2.2. Empirical Review
2.2.1. Fiscal Decentralization and the Environment
2.2.2. Other Environmental Determinants
3. Data and Methodology
3.1. Description and Source of Data
3.2. Empirical Model
3.3. Methodological Strategy
3.3.1. Preliminary Estimates
3.3.2. Estimation Strategy
4. Results
4.1. Descriptive Statistics and Multicollinearity
4.2. Cross-Sectional Dependence and Slope Homogeneity
4.3. Unit Root and Cointegration Test
4.4. MMQR Estimation Results
4.5. Robustness Check
4.6. Brief Discussion of the Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Armenia | China | Israel | Peru |
Australia | Colombia | Japan | Russia |
Austria | El Salvador | Latvia | Serbia |
Azerbaijan | Estonia | Lithuania | South Africa |
Belarus | Finland | Mauritius | Spain |
Belgium | Georgia | Mexico | Sweden |
Bosnia and Herzegovina | Germany | Mongolia | Switzerland |
Brazil | Honduras | Netherlands | Thailand |
Canada | Hungary | New Zealand | Ukraine |
Chile | Iceland | Paraguay | United Kingdom |
References
- Abbas, S., Ahmed, Z., Sinha, A., Mariev, O., & Mahmood, F. (2024). Toward fostering environmental innovation in OECD countries: Do fiscal decentralization, carbon pricing, and renewable energy investments matter? Gondwana Research, 127, 88–99. [Google Scholar] [CrossRef]
- Adebayo, T. S., Altuntaş, M., Goyibnazarov, S., Agyekum, E. B., Zawbaa, H. M., & Kamel, S. (2022). Dynamic effect of disintegrated energy consumption and economic complexity on environmental degradation in top economic complexity economies. Energy Reports, 8, 12832–12842. [Google Scholar] [CrossRef]
- Ali, M., Samour, A., Soomro, S. A., Khalid, W., & Tursoy, T. (2025a). A step towards a sustainable environment in top-10 nuclear energy consumer countries: The role of financial globalization and nuclear energy. Nuclear Engineering and Technology, 57(1), 103142. [Google Scholar] [CrossRef]
- Ali, M., Xiaoying, L., Mehmood, S., Khan, M. A., & Oláh, J. (2025b). Assessing the impact of FDI, CO2 emissions, economic growth, and income inequality on renewable energy consumption in Asia. Energy Strategy Reviews, 58, 101653. [Google Scholar] [CrossRef]
- Amirkhani, M., Ghaemimood, S., Schreeb, J. v., El-Khatib, Z., & Yaya, S. (2022). Extreme weather events and death based on temperature and CO2 emission—A global retrospective study in 77 low-, middle-and high-income countries from 1999 to 2018. Preventive Medicine Reports, 28, 101846. [Google Scholar] [CrossRef]
- Appiah, K., Worae, T. A., Yeboah, B., & Yeboah, M. (2022). The causal nexus between trade openness and environmental pollution in selected emerging economies. Ecological Indicators, 138, 108872. [Google Scholar] [CrossRef]
- Assetto, V. J., Hajba, E., & Mumme, S. P. (2003). Democratization, decentralization, and local environmental policy capacity: Hungary and Mexico. The Social Science Journal, 40(2), 249–268. [Google Scholar] [CrossRef]
- Aziz, G., & Bakoben, H. B. (2024). Environmental decentralization and green economic growth: Do renewable energy development play any role? Energy Strategy Reviews, 54, 101459. [Google Scholar] [CrossRef]
- Bayramli, G., & Karimli, T. (2024). Driving factors of CO2 emissions in South American countries: An application of Seemingly Unrelated Regression model. Regional Sustainability, 5(4), 100182. [Google Scholar] [CrossRef]
- Behera, P., Behera, B., & Sethi, N. (2024). Assessing the impact of fiscal decentralization, green finance and green technology innovation on renewable energy use in European Union countries: What is the moderating role of political risk? Renewable Energy, 229, 120715. [Google Scholar] [CrossRef]
- Cai, H., Tong, Z., Xu, S., Chen, S., Zhu, P., & Liu, W. (2022). Fiscal decentralization, government behavior, and environmental pollution: Evidence from China. Sec. Environmental Economics and Management, 10, 901079. [Google Scholar] [CrossRef]
- Chang, Y., & Chang, Y. (2024). Influence of fiscal decentralization, fintech, and mineral resources on green productivity of G5 countries. Resources Policy, 89, 104509. [Google Scholar] [CrossRef]
- Chen, L., Gozgor, G., Lau, C. K., Mahalik, M. K., Rather, K. N., & Soliman, A. M. (2024). The impact of geopolitical risk on CO2 emissions inequality: Evidence from 38 developed and developing economies. Journal of Environmental Management, 349, 119345. [Google Scholar] [CrossRef]
- Chen, X., & Liang, X. (2021). Foreign direct investment and environmental pollution: A fiscal decentralization perspective. Chinese Journal of Population, Resources and Environment, 19(1), 34–40. [Google Scholar] [CrossRef]
- Cheng, S., Fan, W., Chen, J., Meng, F., Liu, G., Song, M., & Yang, Z. (2020). The impact of fiscal decentralization on CO2 emissions in China. Energy, 192, 116685. [Google Scholar] [CrossRef]
- Chien, F., Chau, K. Y., Sadiq, M., Diep, G. L., Tran, T. K., & Pham, T. H. (2023). What role renewable energy consumption, renewable electricity, energy use and import play in environmental quality? Energy Reports, 10, 3826–3834. [Google Scholar] [CrossRef]
- Choudhury, A., & Sahu, S. (2025). The asymmetric impact of fiscal decentralization on ecological footprint-accounting for methodological refinements and globalization facets. The Journal of Economic Asymmetries, 31, e00400. [Google Scholar] [CrossRef]
- Dietmar, W. (1995). Locational choices of firms and decentralized environmental policy with various instruments. Journal of Urban Economics, 37(3), 290–310. [Google Scholar] [CrossRef]
- Digdowiseiso, K. (2022). Is fiscal decentralization growth enhancing? A cross-country study in developing countries over the period 1990–2014. Economies, 10(3), 62. [Google Scholar] [CrossRef]
- Ding, Y., Tunio, F. H., & Nabi, A. A. (2024). Harmonizing the complexities of financial development and fiscal decentralization in highly populated nations for monitoring environmental quality. Heliyon, 10(21), e39691. [Google Scholar] [CrossRef]
- Driscoll, J. C., & Kraay, A. C. (1998). Consistent covariance matrix estimation with spatially dependent panel data. The Review of Economics and Statistics, 80(4), 549–560. [Google Scholar] [CrossRef]
- Ehigiamusoe, K. U., Lean, H. H., Mustapha, M., & Ramakrishnan, S. (2023). Industrialization, globalization, ICT, and environmental degradation in Malaysia: A frequency domain analysis. Heliyon, 9(10), e20699. [Google Scholar] [CrossRef] [PubMed]
- Fan, W., Li, L., Wang, F., & Li, D. (2020). Driving factors of CO2 emission inequality in China: The role of government expenditure. China Economic Review, 64, 101545. [Google Scholar] [CrossRef]
- Fatima, N., Xuhua, H., Alnafisah, H., & Akhtar, M. R. (2024). Synergy for climate actions in G7 countries: Unraveling the role of environmental policy stringency between technological innovation and CO2 emission interplay with DOLS, FMOLS and MMQR approaches. Energy Reports, 12, 1344–1359. [Google Scholar] [CrossRef]
- Feng, Z., & Li, Y. (2024). Natural resource curse and fiscal decentralization: Exploring the mediating role of green innovations and market regulations in G-20 economies. Resources Policy, 89, 104556. [Google Scholar] [CrossRef]
- Ganda, F., & Panicker, M. (2025). Does access to energy matter? Understanding the complex nexus among energy consumption, ICT, foreign direct investment and economic growth on carbon emissions in Sub-Saharan Africa. Energy Nexus, 17, 100346. [Google Scholar] [CrossRef]
- Garman, C., Haggard, S., & Willis, E. (2001). Fiscal decentralization: A political theory with latin american cases. World Politics, 53(2), 205–236. [Google Scholar] [CrossRef]
- Grossman, G. M., & Krueger, A. B. (1995). Economic growth and the environment. The Quarterly Journal of Economics, 110(2), 353–377. [Google Scholar] [CrossRef]
- Guo, S., Wen, L., Wu, Y., Yue, X., & Fan, G. (2020). Fiscal decentralization and local environmental pollution in China. International Journal of Environmental Research and Public Health, 17, 8661. [Google Scholar] [CrossRef]
- He, Q. (2015). Fiscal decentralization and environmental pollution: Evidence from Chinese panel data. China Economic Review, 36, 86–100. [Google Scholar] [CrossRef]
- Hossain, M. R., Rao, A., Sharma, G. D., Dev, D., & Kharbanda, A. (2024). Empowering energy transition: Green innovation, digital finance, and the path to sustainable prosperity through green finance initiatives. Energy Economics, 136, 107736. [Google Scholar] [CrossRef]
- Hu, B., Guo, M., & Zhang, S. (2023). The role of fiscal decentralization and natural resources markets in environmental sustainability in OECD. Resources Policy, 85, 103855. [Google Scholar] [CrossRef]
- Huang, F. (2023). How does trade and fiscal decentralization leads to green growth; role of renewable energy development. Renewable Energy, 214, 334–341. [Google Scholar] [CrossRef]
- Huang, Z., & Ren, X. (2024). Impact of natural resources, resilient economic growth, and energy consumption on CO2 emissions. Resources Policy, 90, 104714. [Google Scholar] [CrossRef]
- Hwang, Y. K., & Venter, A. (2025). The impact of the digital economy and institutional quality in promoting low-carbon energy transition. Renewable Energy, 238, 121884. [Google Scholar] [CrossRef]
- IEA. (2024). CO2 emissions in 2023. IEA. Available online: https://www.iea.org/reports/co2-emissions-in-2023 (accessed on 14 January 2025).
- Im, K. S., Pesaran, M., & Shin, Y. (2003). Testing for unit roots in heterogeneous panels. Journal of Econometrics, 115(1), 53–74. [Google Scholar] [CrossRef]
- Islam, M. S., Rahaman, S. H., Rehman, A. u., & Khan, I. (2023). ICT’s impact on CO2 emissions in GCC region: The relevance of energy use and financial development. Energy Strategy Reviews, 49, 101147. [Google Scholar] [CrossRef]
- Jahanger, A., Zaman, U., Hossain, M. R., & Awan, A. (2023). Articulating CO2 emissions limiting roles of nuclear energy and ICT under the EKC hypothesis: An application of non-parametric MMQR approach. Geoscience Frontiers, 14(5), 101589. [Google Scholar] [CrossRef]
- Ji, X., Umar, M., Ali, S., Ali, W., Tang, K., & Khan, Z. (2021). Does fiscal decentralization and eco-innovation promote sustainable environment? A case study of selected fiscally decentralized countries. Sustainable Development, 29, 79–88. [Google Scholar] [CrossRef]
- Kabir, M., Kabir, Z., & Sultana, N. (2022). Chapter 14—Climate change, sustainability, and renewable energy in developing economies. In prospects in the developing economies (pp. 377–415). Elsevier. [Google Scholar] [CrossRef]
- Kao, C., & Chiang, M.-H. (2001). On the estimation and inference of a cointegrated regression in panel data. In B. Baltagi, T. Fomby, & R. Carter Hill (Eds.), Nonstationary panels, panel cointegration, and dynamic panels Advances in econometrics (Vol. 15, pp. 179–222). Emerald Group Publishing Limited. [Google Scholar] [CrossRef]
- Khan, Z., Ali, S., Dong, K., & Li, R. Y. (2021). How does fiscal decentralization affect CO2 emissions? The roles of institutions and human capital. Energy Economics, 94, 105060. [Google Scholar] [CrossRef]
- Krevel, C. v., & Peters, M. (2024). How natural resource rents, exports, and government resource revenues determine Genuine Savings: Causal evidence from oil, gas, and coal. World Development, 181, 106657. [Google Scholar] [CrossRef]
- Kutta, T., & Dette, H. (2024). Validating approximate slope homogeneity in large panels. Journal of Econometrics, 246(1–2), 105898. [Google Scholar] [CrossRef]
- Lin, B., & Wang, Z. (2024). Do local government investment preferences influence renewable energy technology innovation? Evidence from China. Renewable Energy, 231, 120934. [Google Scholar] [CrossRef]
- Liu, F., Feng, J., Zhai, G., & Razzaq, A. (2022). Influence of fiscal decentralization and renewable energy investment on ecological sustainability in EU: What is the moderating role of institutional governance? Renewable Energy, 200, 1265–1274. [Google Scholar] [CrossRef]
- Machado, J. A., & Silva, J. S. (2019). Quantiles via moments. Journal of Econometrics, 213(1), 145–173. [Google Scholar] [CrossRef]
- Martinez-Vazquez, J., & McNab, R. M. (2003). Fiscal decentralization and economic growth. World Development, 31(9), 1597–1616. [Google Scholar] [CrossRef]
- Meng, B., Liu, Y., Gao, Y., Li, M., Wang, Z., Xue, J., Andrew, R., Feng, K., Qi, Y., Sun, Y., Sun, H., & Wang, K. (2023). Developing countries’ responsibilities for CO2. One Earth, 6(2), 167–181. [Google Scholar] [CrossRef]
- Mushtaq, M., Hameed, G., Ahmed, S., Fahlevi, M., Aljuaid, M., & Saniuk, S. (2024). How does economic policy uncertainty impact CO2 emissions? Investigating investment’s role across 22 economies (1997–2021). Energy Reports, 11, 5083–5091. [Google Scholar] [CrossRef]
- Ngangnchi, F. H., Aquilas, N. A., & Mbella, M. E. (2024). Natural resource use, industrialization and climate change in Africa: Blueprints for sustainable regional development. Research in Globalization, 9, 100245. [Google Scholar] [CrossRef]
- Nguea, S. M. (2023). Demographic dividend and environmental sustainability: The mediation effects of economic growth, ICT, foreign direct investment, and urbanization. Next Sustainability, 2, 100005. [Google Scholar] [CrossRef]
- Oates, W. E. (1972). Fiscal federalism. Edward Elgar Publishing. [Google Scholar] [CrossRef]
- Patel, N., & Mehta, D. (2023). The asymmetry effect of industrialization, financial development and globalization on CO2 emissions in India. International Journal of Thermofluids, 20, 100397. [Google Scholar] [CrossRef]
- Pedroni, P. (2001). Fully modified OLS for heterogeneous cointegrated panels. In B. Baltagi, T. Fomby, & R. Carter Hill (Eds.), Nonstationary panels, panel cointegration, and dynamic panels (pp. 93–130). Emerald Group Publishing Limited. [Google Scholar] [CrossRef]
- Perugini, F. (2024). Local government efficiency and economic growth: The Italian case. Socio-Economic Planning Sciences, 91, 101775. [Google Scholar] [CrossRef]
- Pesaran, M. (2004). General diagnostic tests for cross section dependence in panels. CESifo working paper series no. 1229, IZA discussion paper no. 1240. Available online: https://docs.iza.org/dp1240.pdf (accessed on 20 January 2025).
- Pesaran, M. H., & Yamagata, T. (2008). Testing slope homogeneity in large panels. Journal of Econometrics, 142(1), 50–93. [Google Scholar] [CrossRef]
- Pinilla-Rodríguez, D. E., & Hernández-Medina, P. (2024). Governance and fiscal decentralisation in Latin America: An empirical approach. Economies, 12(8), 207. [Google Scholar] [CrossRef]
- Qian, Y., & Weingast, B. R. (1997). Federalism as a commitment to reserving market incentives. Journal of Economic Perspectives, 11(4), 83–92. [Google Scholar] [CrossRef]
- Rahman, M. M., Khan, Z., Khan, S., & Tariq, M. (2023). How is energy intensity affected by industrialisation, trade openness and financial development? A dynamic analysis for the panel of newly industrialized countries. Energy Strategy Reviews, 49, 101182. [Google Scholar] [CrossRef]
- Rehman, M. A., Hasan, M., Pata, U. K., Chen, X. H., & Kontoleon, A. (2024). Exploring the Nexus of technology, environmental policy stringency, and political globalization: Pathways to achieving sustainability. Energy Economics, 107979. [Google Scholar] [CrossRef]
- Ridwan, M., Urbee, A. J., Voumik, L. C., Das, M. K., Rashid, M., & Esquivias, M. A. (2024). Investigating the environmental Kuznets curve hypothesis with urbanization, industrialization, and service sector for six South Asian Countries: Fresh evidence from Driscoll Kraay standard error. Research in Globalization, 8, 100223. [Google Scholar] [CrossRef]
- Sampene, A. K., Li, C., & Wiredu, J. (2024). Environmental technology to stimulate life expectancy: A deep dive into the role of PM2.5 and carbon emission. Environment International, 193, 109118. [Google Scholar] [CrossRef]
- Seabright, P. (1996). Accountability and decentralisation in government: An incomplete contracts model. European Economic Review, 40(1), 61–89. [Google Scholar] [CrossRef]
- Shabani, Z. D. (2024). Renewable energy and CO2 emissions: Does human capital matter? Energy Reports, 11, 3474–3491. [Google Scholar] [CrossRef]
- Shan, S., Ahmad, M., Tan, Z., Adebayo, T. S., Li, R. Y., & Kirikkaleli, D. (2021). The role of energy prices and non-linear fiscal decentralization in limiting carbon emissions: Tracking environmental sustainability. Energy, 234, 121243. [Google Scholar] [CrossRef]
- Sima, M., Liang, P., & Qingjie, Z. (2023). The impact of fiscal decentralization on economic growth: A comparative analysis of selected African and OECD countries. Heliyon, 9(9), e19520. [Google Scholar] [CrossRef]
- Soberon, A., Mazzanti, M., Musolesi, A., & Rodriguez-Poo, J. M. (2025). Efficient estimation of a partially linear panel data model with cross-sectional dependence. Journal of Multivariate Analysis, 206, 105393. [Google Scholar] [CrossRef]
- Song, F., Liu, Z., & Hussain, H. (2025). Assessing the role of energy efficiency, environmental policy stringency, and green energy for achieving carbon neutrality goals in BRICS economies. Energy Strategy Reviews, 57, 101546. [Google Scholar] [CrossRef]
- Stigler, G. (1957). The tenable range of functions of local government. In Federal expenditure policy for economic growth and stability, joint economic committee, subcommittee on fiscal politics; Government Printing Office. pp. 213–219. [Google Scholar]
- Su, C.-W., Umar, M., & Khan, Z. (2021). Does fiscal decentralization and eco-innovation promote renewable energy consumption? Analyzing the role of political risk. Science of The Total Environment, 710, 142220. [Google Scholar] [CrossRef] [PubMed]
- Sultana, M., & Rahman, M. H. (2024). Investigating the impact of GDP, energy mix, energy intensity, and the service sector on environmental pollution in MENA countries: An application of Driscoll-Kraay standard error approach. Social Sciences & Humanities Open, 10, 101087. [Google Scholar] [CrossRef]
- Sun, Y., Gao, P., & Razzaq, A. (2023). How does fiscal decentralization lead to renewable energy transition and a sustainable environment? Evidence from highly decentralized economies. Renewable Energy, 206, 1064–1074. [Google Scholar] [CrossRef]
- Sun, Y., Guan, W., Razzaq, A., Shahzad, M., & An, N. B. (2022). Transition towards ecological sustainability through fiscal decentralization, renewable energy and green investment in OECD countries. Renewable Energy, 190, 385–395. [Google Scholar] [CrossRef]
- Tiebout, C. M. (1956). A pure theory of local expenditures. Journal of Political Economy, 64(5), 416–424. Available online: https://www.jstor.org/stable/1826343 (accessed on 20 January 2025). [CrossRef]
- Umar, M., Ji, X., Safi, A., & Afshan, S. (2024). Decentralization, institutional quality, and carbon neutrality: Unraveling the nexus in China’s pursuit of sustainable development. Economic Analysis and Policy, 82, 1238–1249. [Google Scholar] [CrossRef]
- Vallejo Mata, J. P., González Bautista, M. G., Solis Granda, L. E., & Zurita Moreano, E. G. (2024). Evaluating the environmental kuznets curve: The role of renewable energy, economic growth, urban density and trade openness on CO2 emissions. An analysis for high-income countries using the CS-ARDL model. International Journal of Energy Economics and Policy, 14(6), 580–596. [Google Scholar] [CrossRef]
- Wang, F., Cheng, S., Chen, M., & Cheng, S. (2024). Does sub-provincial fiscal decentralization reform improve energy transition? Evidence from a county-level quasi-natural experiment in China. Journal of Cleaner Production, 481, 144156. [Google Scholar] [CrossRef]
- Wang, J. (2024). Does environmental decentralization promote corporate ESG performance? Evidence from China. Innovation and Green Development, 3(4), 100178. [Google Scholar] [CrossRef]
- Wang, L., Li, S., & Lv, Y. (2024). Influence of local governments on the greening of the manufacturing sector: A perspective on environmental governance objectives. Heliyon, 10(1), e23801. [Google Scholar] [CrossRef]
- Wang, Q.-S., & Su, C.-W. (2022). Fiscal decentralisation in China: Is the guarantee of improving energy efficiency? Energy Strategy Reviews, 43, 100938. [Google Scholar] [CrossRef]
- Wang, S., & Ma, L. (2024). Fiscal decentralisation and renewable energy development: Inhibition or promotion? Energy, 311, 133303. [Google Scholar] [CrossRef]
- Weili, L., Khan, H., khan, I., & Han, L. (2022). The impact of information and communication technology, financial development, and energy consumption on carbon dioxide emission: Evidence from the Belt and Road countries. Environmental Science and Pollution Research, 29, 27703–27718. [Google Scholar] [CrossRef]
- Westerlund, J. (2007). New simple tests for panel cointegration. Econometric Reviews, 24(3), 297–316. [Google Scholar] [CrossRef]
- Wildasin, D. E. (1997). Externalities and bailouts: Hard and soft budget constraints in intergovernmental fiscal relations. Policy research working paper series from (1843). Available online: https://econwpa.ub.uni-muenchen.de/econ-wp/pe/papers/0112/0112002.pdf (accessed on 20 January 2025).
- Xie, P., Xiao, W., Cai, Y., & Zhu, Z. (2024). Does decentralization improve natural resources and government efficiency? Resources Policy, 91, 104865. [Google Scholar] [CrossRef]
- Yang, J., Yu, D., & Guan, Z. (2025). Fiscal decentralization, local government behavior and environmental pollution: Evidence from “Province-Managing-County” reform in China. Journal of Environmental Management, 373, 123572. [Google Scholar] [CrossRef] [PubMed]
- You, Z., Li, L., & Waqas, M. (2024). How do information and communication technology, human capital and renewable energy affect CO2 emission; New insights from BRI countries. Heliyon, 10(4), e26481. [Google Scholar] [CrossRef]
- Yu, Z., Wu, Y., & Zhu, Z. (2023). Fiscal decentralization, environmental regulation and high-quality economic development. Sustainability, 15(10), 7911. [Google Scholar] [CrossRef]
- Zhang, G., Liu, W., & Duan, H. (2020). Environmental regulation policies, local government enforcement and pollution-intensive industry transfer in China. Computers & Industrial Engineering, 148, 106748. [Google Scholar] [CrossRef]
- Zhang, S., Li, Y., Xu, C., & Xiong, Z. (2024). Does fiscal decentralization reduce environmental degradation through mitigating resource mismatch and digital transformation? Evidence from China’s resource-based cities. Resources Policy, 95, 105155. [Google Scholar] [CrossRef]
- Zhao, L., Shao, K., & Ye, J. (2022). The impact of fiscal decentralization on environmental pollution and the transmission mechanism based on promotion incentive perspective. Environmental Science and Pollution Research, 29, 86634–86650. [Google Scholar] [CrossRef]
- Zhu, H., Chen, M., & Zhao, S. (2024). Natural resource rent, green finance, and CO2 emissions from the industrial sector. Resources Policy, 98, 105370. [Google Scholar] [CrossRef]
Author | Country | Period | Methodology | Findings |
---|---|---|---|---|
Shabani (2024) | 67 countries | 1999–2019 | Dynamic threshold panel data model | RE, HC and P |
Ganda and Panicker (2025) | 45 countries in sub-Saharan Africa | 2000–2019 | Panel threshold model | PE, FDI, GPD and ICT’s |
You et al. (2024) | 64 economies | 2000–2021 | Dumitrescu–Hurlin’s group estimator of increased mean, group estimator of mean and panel causality | ICT’s, HC and RE |
Islam et al. (2023) | GCC countries | 1995–2019 | Generalized least squares and pooled group means | ICT’s and FD |
Nguea (2023) | 32 African countries | 1996–2018 | Driscoll–Kraay standard and error generalized method of moments for instrumental variables | U, G and RE |
Ehigiamusoe et al. (2023) | Malaysia | 1970–2019 | Granger causality, vector error correction, variance decompositions | I, G and ICT’s |
Ngangnchi et al. (2024) | 45 African countries | 2005–2022 | Generalized least squares, Driscoll–Kraay effects, Dynamic Driscoll–Kraay effects and quantile-on-quantile panel regression | NR and I |
Z. Huang and Ren (2024) | 160 developing countries | 2001–2022 | Distributed lag model increased transversally | NR and EE |
Vallejo Mata et al. (2024) | 30 high-income countries | 2000–2020 | Cross-sectional autoregressive distributed lag autoregressive model and the augmented mean group model | RE |
Patel and Mehta (2023) | India | 1971–2019 | Nonlinear autoregressive autoregressive distributional lag model | NR and EE |
Bayramli and Karimli (2024) | 7 South American countries | 2000–2022 | Apparently unrelated regression model | GPD, I and T |
Zhu et al. (2024) | 20 OECD countries | 2010–2020 | Common correlated effects mean group y autoregressive distributed lag model | GF |
Variable | Symbol | Unit of Measurement | Source |
---|---|---|---|
CO2 emissions | CO2 | Metric tons per capita | World Bank |
Expenditure-side fiscal decentralization | DS | Ratio of local government spending to national spending | International Monetary Fund |
Revenue-side fiscal decentralization | DI | Ratio of local government revenue to national revenue | International Monetary Fund |
Renewable energy | ER | % of final energy consumption | World Bank |
GDP | EG | USD at constant 2015 prices | World Bank |
Natural resources | NR | Natural resource rent as % of GDP | World Bank |
Information technology | ICT | Individuals using the internet as a % of population | World Bank |
Variables | Obs | Mean | Standard Dev | Min | Max |
---|---|---|---|---|---|
LnCO2 | 756 | 1.61 | 0.75 | −0.41 | 2.92 |
LnDS | 696 | −1.87 | 0.85 | −6.99 | −0.67 |
LnDI | 750 | −2.43 | 0.97 | −7.36 | −0.47 |
LnRE | 756 | 2.67 | 0.97 | −0.22 | 4.42 |
LnGDP | 756 | 9.48 | 1.08 | 7.34 | 11.38 |
LnNR | 745 | −0.31 | 2.21 | −9.13 | 3.76 |
LnICT | 748 | 3.76 | 0.90 | −0.72 | 4.60 |
Variable | Model 1 | Model 2 | ||
---|---|---|---|---|
VIF | 1/VIF | VIF | 1/VIF | |
LnDS | 1.07 | 0.93 | - | - |
LnDI | - | - | 1.09 | 0.91 |
LnRE | 1.04 | 0.96 | 1.03 | 0.97 |
LNGDP | 2.49 | 0.40 | 2.54 | 0.39 |
LnNR | 1.40 | 0.72 | 1.40 | 0.72 |
LnICT | 1.88 | 0.53 | 1.90 | 0.53 |
Mean VIF | 1.58 | 1.59 |
Variable | Model 1 | Model 2 |
---|---|---|
LnC02 | 11.66 *** | 13.57 *** |
LnDS | 4.58 *** | - |
LnDI | - | 8.64 *** |
LnRE | 3.51 *** | 2.29 *** |
LNGDP | 17.15 *** | 17.95 *** |
LnNR | 34.36 *** | 36.89 *** |
LnICT | 56.97 *** | 62.67 *** |
Stats | Model 1 | Model 2 |
---|---|---|
Delta | 8.01 *** | 8.82 *** |
Delta adjust | 10.91 *** | 12.03 *** |
Variable | Levels | First Differences | Observation |
---|---|---|---|
LnC02 | 5.42 | −6.397 *** | I(I) |
LnDS | −0.445 | −3.789 *** | I(I) |
LnDI | −3.48 *** | - | I(0) |
LnRE | −2.04 ** | −6.499 *** | I(I) |
LnGDP | −7.30 *** | - | I(0) |
LnNR | 0.18 | −6.499 *** | I(I) |
LnICT | −7.485 *** | - | I(0) |
Test | Model 1 | Model 2 |
---|---|---|
Kao Test | ||
Modified Dickey–Fuller t | 3.51 *** | 3.69 *** |
Dickey–Fuller t | 4.87 *** | 5.1 *** |
Augmented Dickey–Fuller t | 4.24 *** | 4.38 *** |
Unadjusted modified Dickey–Fuller t | 2.91 *** | 2.85 ** |
Unadjusted Dickey–Fuller t | 4.05 *** | 3.96 *** |
Pedroni Test | ||
Modified Phillips–Perron t | 3.96 *** | 3.95 *** |
Phillips–Perron t | −6.04 *** | −7.33 *** |
Augmented Dickey–Fuller t | −5.27 *** | −6.57 *** |
Westerlund test | ||
Variance ratio | −2.50 ** | −2.44 ** |
Variables | 0.10 | 0.20 | 0.30 | 0.40 | 0.50 | 0.60 | 0.70 | 0.80 | 0.90 |
---|---|---|---|---|---|---|---|---|---|
Model 1: Fiscal Decentralization on the Expenditure Side | |||||||||
LnDS | 0.10 *** | 0.12 *** | 0.14 *** | 0.16 *** | 0.17 *** | 0.18 *** | 0.19 *** | 0.20 *** | 0.23 *** |
(0.021) | (0.019) | (0.017) | (0.016) | (0.015) | (0.016) | (0.165) | (0.018) | (0.021) | |
LnRE | −0.44 *** | −0.41 *** | −0.394 *** | −0.37 *** | −0.36 *** | −0.35 *** | −0.33 *** | −0.314 *** | −0.28 *** |
(0.023) | (0.021) | (0.019) | (0.017) | (0.017) | (0.017) | (0.018) | (0.02) | (0.024) | |
LnGDP | 0.39 *** | 0.41 *** | 0.43 *** | 0.45 *** | 0.46 *** | 0.47 *** | 0.483 *** | 0.495 *** | 0.522 *** |
(0.034) | (0.03) | (0.027) | (0.025) | (0.025) | (0.025) | (0.027) | (0.029) | (0.035) | |
LnNR | 0.024 ** | 0.039 *** | 0.052 *** | 0.066 *** | 0.074 *** | 0.083 *** | 0.093 *** | 0.104 *** | 0.124 *** |
(0.011) | (0.01) | (0.009) | (0.008) | (0.008) | (0.008) | (0.008) | (0.01) | (0.011) | |
LnICT | 0.063 * | 0.059 * | 0.055 ** | 0.052 ** | 0.049 * | 0.047 * | 0.044 | 0.041 | 0.04 |
(0.035) | (0.03) | (0.027) | (0.03) | (0.025) | (0.025) | (0.027) | (0.03) | (0.035) | |
Constant | −1.58 *** | −1.6 *** | −1.61 *** | −1.63 *** | −1.64 *** | −1.65 *** | −1.66 *** | −1.67 *** | −1.7 *** |
(0.286) | (0.247) | (0.222) | (0.21) | (0.205) | (0.208) | (0.22) | (0.238) | (0.290) | |
Model 2: Fiscal Decentralization on the Revenue Side | |||||||||
LnDI | 0.20 *** | 0.195 *** | 0.18 *** | 0.18 *** | 0.178 *** | 0.17 *** | 0.169 *** | 0.16 *** | 0.156 *** |
(0.024) | (0.02) | (0.017) | (0.016) | (0.016) | (0.016) | (0.016) | (0.017) | (0.020) | |
LnRE | −0.45 *** | −0.42 *** | −0.38 *** | −0.361 *** | −0.342 *** | −0.32 *** | −0.31 *** | −0.282 *** | −0.25 *** |
(0.023) | (0.02) | (0.02) | (0.016) | (0.015) | (0.015) | (0.016) | (0.017) | (0.02) | |
LnGDP | 0.37 *** | 0.38 *** | 0.43 *** | 0.439 *** | 0.454 *** | 0.47 *** | 0.482 *** | 0.501 *** | 0.53 *** |
(0.034) | (0.029) | (0.025) | (0.023) | (0.023) | (0.023) | (0.023) | (0.025) | (0.029) | |
LnNR | 0.039 *** | 0.05 *** | 0.07 *** | 0.072 *** | 0.079 *** | 0.09 *** | 0.09 *** | 0.101 *** | 0.114 *** |
(0.012) | (0.01) | (0.01) | (0.008) | (0.008) | (0.008) | (0.008) | (0.009) | (0.010) | |
LnICT | 0.07 ** | 0.06 ** | 0.058 ** | 0.056 ** | 0.053 * | 0.05 ** | 0.048 ** | 0.045 * | 0.041 |
(0.034) | (0.03) | (0.024) | (0.023) | (0.0022) | (0.022) | (0.023) | (0.025) | (0.029) | |
Constant | −1.01 *** | −1.17 *** | −1.35 *** | −1.42 *** | −1.512 *** | −1.61 *** | −1.68 *** | −1.79 *** | −1.95 *** |
(0.284) | (0.244) | (0.205) | (0.193) | (0.187) | (0.188) | (0.192) | (0.21) | (0.245) |
Variable | Model 1 | Model 2 |
---|---|---|
LnDS | 0.17 *** | - |
(0.001) | ||
LnDI | - | 0.18 *** |
(0.006) | ||
LnRE | −0.36 *** | −0.35 *** |
(0017) | (0.016) | |
LNGDP | 0.46 *** | 0.45 *** |
(0.016) | (0015) | |
LnNR | 0.073 *** | 0.078 *** |
(0.01) | (0.01) | |
LnICT | 0.05 * | 0.05 ** |
(0.024) | (0.022) | |
Constant | −1.64 *** | −1.5 *** |
(0.12) | (0.11) | |
R-squared | 0.7 | 0.7 |
Root MSE | 0.43 | 0.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrillo-Pulgar, W.G.; Vallejo-Mata, J.P.; Tixi-Gallegos, K.G.; Sánchez Cuesta, P.A.; Romero-Alvarado, J. Does Fiscal Decentralization Drive CO2 Emissions? A Quantile Regression Analysis. J. Risk Financial Manag. 2025, 18, 235. https://doi.org/10.3390/jrfm18050235
Carrillo-Pulgar WG, Vallejo-Mata JP, Tixi-Gallegos KG, Sánchez Cuesta PA, Romero-Alvarado J. Does Fiscal Decentralization Drive CO2 Emissions? A Quantile Regression Analysis. Journal of Risk and Financial Management. 2025; 18(5):235. https://doi.org/10.3390/jrfm18050235
Chicago/Turabian StyleCarrillo-Pulgar, Wilman Gustavo, Juan Pablo Vallejo-Mata, Katherine Gissel Tixi-Gallegos, Patricio Alejandro Sánchez Cuesta, and Josué Romero-Alvarado. 2025. "Does Fiscal Decentralization Drive CO2 Emissions? A Quantile Regression Analysis" Journal of Risk and Financial Management 18, no. 5: 235. https://doi.org/10.3390/jrfm18050235
APA StyleCarrillo-Pulgar, W. G., Vallejo-Mata, J. P., Tixi-Gallegos, K. G., Sánchez Cuesta, P. A., & Romero-Alvarado, J. (2025). Does Fiscal Decentralization Drive CO2 Emissions? A Quantile Regression Analysis. Journal of Risk and Financial Management, 18(5), 235. https://doi.org/10.3390/jrfm18050235