Can Corporate Governance Structures Reduce Fraudulent Financial Reporting in the Banking Sector? Insights from the Fraud Hexagon Framework
Abstract
1. Introduction
2. Materials and Methods
2.1. Determinant Fraud Hexagon on FFR
2.2. The Moderating Role of Audit Committee on FFR
3. Results
β7(Lev × AudCom) + β8(BDOUT × AudCom) + β9(AChange × AudCom) +
β10(DChange × AudCom) + β11(CEOPic × AudCom) + β12(PolCon × AudCom) + e
4. Discussion
4.1. Moderating Effect of Audit Committee on Fraudulent Financial Reporting: The Two-Stage Approach
4.2. Interpreting Moderating Effects
4.2.1. Determining the Significance of Moderating Effects
4.2.2. Determining the Strength of Moderating Effects
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- ACFE. (2020). Report to the nations, 2020 global study on occupational fraud and abuse. Association of Certified Fraud Examiners. Available online: https://acfepublic.s3-us-west-2.amazonaws.com/2020-Report-to-the-Nations.pdf (accessed on 21 January 2025).
- Achmad, T., Ghozali, I., & Pamungkas, I. D. (2022a). Hexagon fraud: Detection of fraudulent financial reporting in state-owned enterprises Indonesia. Economies, 10(1), 13. [Google Scholar] [CrossRef]
- Achmad, T., Ghozali, I., & Pamungkas, I. D. (2024). Detecting fraudulent financial statements with analysis fraud hexagon: Evidence from state-owned enterprises Indonesia. WSEAS Transactions on Business and Economics, 21, 2314–2323. [Google Scholar] [CrossRef]
- Achmad, T., Ghozali, I., Rahardian, M., Helmina, A., Hapsari, D. I., & Pamungkas, I. D. (2022b). Detecting fraudulent financial reporting using the Fraud Hexagon model: Evidence from the banking sector in Indonesia. Economies, 11(1), 5. [Google Scholar] [CrossRef]
- Ahmad, F., Bradbury, M., & Habib, A. (2022). Political connections, political uncertainty and audit fees: Evidence from Pakistan. Managerial Auditing Journal, 37(2), 255–282. [Google Scholar] [CrossRef]
- Alfarago, D., & Mabrur, A. (2022). Do Fraud Hexagon components promote fraud in Indonesia? Etikonomi, 21(2), 399–410. [Google Scholar] [CrossRef]
- Anisykurlillah, I., Ardiansah, M. N., & Nurrahmasari, A. (2023). Fraudulent financial statements detection using fraud triangle analysis: Institutional ownership as a moderating variable. Accounting Analysis Journal, 11(2), 138–148. [Google Scholar] [CrossRef]
- Ariningrum, I., & Diyanty, V. (2017). The impact of political connections and the effectiveness of board of commissioner and audit committees on audit fees. Australasian Accounting, Business and Finance Journal, 11(4), 53–70. [Google Scholar] [CrossRef]
- Ashiru, F., Adegbite, E., Frecknall-Hughes, J., & Daodu, O. (2024). Reliability of the audit committee in weak institutional environments: Evidence from Nigeria. Journal of International Accounting, Auditing and Taxation, 57, 100657. [Google Scholar] [CrossRef]
- Babalola, F. I., Kokogho, E., Odio, P. E., Adeyanju, M. O., & Sikhakhane-Nwokediegwu, Z. (2025). Audit committees and financial reporting quality: A conceptual analysis of governance structures and their impact on transparency. International Journal of Management and Research, 4(1), 89–100. [Google Scholar] [CrossRef]
- Bader, A. A., Abu Hajar, Y. A., Weshah, S. R. S., & Almasri, B. K. (2024). Predicting risk of and motives behind fraud in financial statements of Jordanian industrial firms using hexagon theory. Journal of Risk and Financial Management, 17(3), 120. [Google Scholar] [CrossRef]
- Badolato, P. G., Donelson, D. C., & Ege, M. (2014). Audit committee financial expertise and earnings management: The role of status. Journal of Accounting and Economics, 58(2–3), 208–230. [Google Scholar] [CrossRef]
- Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173. [Google Scholar] [CrossRef]
- Biduri, S., & Tjahjadi, B. (2024). Determinants of financial statement fraud: The perspective of pentagon fraud theory (evidence on Islamic banking companies in Indonesia). Journal of Islamic Accounting and Business Research. ahead-of-print. [Google Scholar] [CrossRef]
- Capalbo, F., Frino, A., Lim, M. Y., Mollica, V., & Palumbo, R. (2018). The impact of CEO narcissism on earnings management. Abacus, 54(2), 210–226. [Google Scholar] [CrossRef]
- Chin, W. W. (2009). Bootstrap cross-validation indices for PLS path model assessment. In Handbook of partial least squares: Concepts, methods and applications (pp. 83–97). Springer. [Google Scholar] [CrossRef]
- Chin, W. W., Marcolin, B. L., & Newsted, P. R. (2003). A partial least squares latent variable modeling approach for measuring interaction effects: Results from a Monte Carlo simulation study and an electronic-mail emotion/adoption study. Information Systems Research, 14(2), 189–217. [Google Scholar] [CrossRef]
- Cohen, J. (1988). Set correlation and contingency tables. Applied Psychological Measurement, 12(4), 425–434. [Google Scholar] [CrossRef]
- Cressey, D. R. (1953). Other people’s money, dalam “detecting and predicting financial statement fraud: The effectiveness of the fraud triangle and SAS no 99”. Journal of Corporate Governance and Firm Performance, 13, 53–81. [Google Scholar] [CrossRef]
- Crowe, H. (2011). Why the fraud triangle is no longer enough. Horwath, Crowe LLP. Available online: https://www.fraudconference.com/uploadedFiles/Fraud_Conference/Content/Course-Materials/presentations/23rd/ppt/10C-Jonathan-Marks.pdf (accessed on 18 July 2025).
- Dechow, P. M., Ge, W., Larson, C. R., & Sloan, R. G. (2011). Predicting material accounting misstatements. Contemporary Accounting Research, 28(1), 17–82. [Google Scholar] [CrossRef]
- Devi, P. N. C., Widanaputra, A. A. G. P., Budiasih, I. G. A. N., & Rasmini, N. K. (2021). The effect of fraud pentagon theory on financial statements: Empirical evidence from Indonesia. The Journal of Asian Finance, Economics and Business, 8(3), 1163–1169. [Google Scholar]
- Erena, O. T., Kalko, M. M., & Debele, S. A. (2022). Corporate governance mechanisms and firm performance: Empirical evidence from medium and large-scale manufacturing firms in Ethiopia. Corporate Governance (Bingley), 22(2), 213–242. [Google Scholar] [CrossRef]
- Felix, R., Mansi, S., & Pevzner, M. (2024). Audit committee–CFO political dissimilarity and financial reporting quality. Journal of Accounting and Public Policy, 45, 107209. [Google Scholar] [CrossRef]
- Fitriana, L., Sinarasri, A., & Nurcahyono, N. (2024). Factors affecting financial statement fraud in banking sector: A agency perspective. Maksimum, 14(1), 102. [Google Scholar] [CrossRef]
- Ghaisani, A. A., & Supatmi, S. (2023). Detection of financial statement fraud using the fraud pentagon theory. OWNER: Journal of Accounting and Research, 7(1), 599–611. [Google Scholar] [CrossRef]
- Gorshunov, M. A., Armenakis, A. A., Harris, S. G., & Walker, H. J. (2021). Quad-qualified audit committee director: Implications for monitoring and reducing financial corruption. Journal of Corporate Finance, 66, 101854. [Google Scholar] [CrossRef]
- Guo, J., Huang, P., & Zhang, Y. (2019). Do debt covenant violations serve as a risk factor of ineffective internal control? Review of Quantitative Finance and Accounting, 52(1), 231–251. [Google Scholar] [CrossRef]
- Handoko, B. L., & Salim, A. S. J. (2022, June 24–27). Fraud detection using Fraud Hexagon model in top index shares of KOMPAS 100. 2022 12th international workshop on computer science and engineering, WCSE 2022 (pp. 112–116), Xiamen, China. [Google Scholar] [CrossRef]
- Hassan, S. W. U., Kiran, S., Gul, S., Khatatbeh, I. N., & Zainab, B. (2025). The perception of accountants/auditors on the role of corporate governance and information technology in fraud detection and prevention. Journal of Financial Reporting and Accounting, 23(1), 5–29. [Google Scholar] [CrossRef]
- Hill, J., & Kirby, P. (2022). Wirecard trial of executives opens in German fraud scandal. BBC News. Available online: https://www.bbc.com/news/world-europe-63893933 (accessed on 27 May 2025).
- Indrijawati, A., Fitri, Y., & Ningsih, N. (2025). Antecedents of corruption in the perspective of local government employees: A Fraud Hexagon theory approach. Public and Municipal Finance, 14(1), 106–116. [Google Scholar] [CrossRef]
- Junus, A., Sundari, S., & Azzahra, S. Z. (2025). Fraudulent financial reporting and firm value: An empirical analysis from the Fraud Hexagon perspective. Investment Management and Financial Innovations, 22(1), 339–350. [Google Scholar] [CrossRef]
- Kassem, R. (2022). Elucidating corporate governance’s impact and role in countering fraud. In Corporate governance (Bingley) (Vol. 22, Issue 7, pp. 1523–1546). Emerald Publishing. [Google Scholar] [CrossRef]
- Khamainy, A. H., Ali, M., & Setiawan, M. A. (2022). Detecting financial statement fraud through new fraud diamond model: The case of Indonesia. Journal of Financial Crime, 29(3), 925–941. [Google Scholar] [CrossRef]
- KPK. (2025). KPK ungkap fraud kredit di bank daerah capai Rp1,2 T—Nasional. Bloomberg Technoz. Available online: https://www.bloombergtechnoz.com/detail-news/71215/kpk-ungkap-fraud-kredit-di-bank-daerah-capai-rp1-2-t (accessed on 29 May 2025).
- Lastanti, H. S., Murwaningsari, E., & Umar, H. (2022). The effect of hexagon fraud on fraud financial statements with governance and culture as moderating variables. Media Riset Akuntansi, Auditing & Informasi, 22(1), 143–156. [Google Scholar] [CrossRef]
- Lee, C.-H., & Bose, S. (2025). CEO turnover in family firms: The corporate transparency perspective. China Accounting and Finance Review, 27(2), 275–307. [Google Scholar] [CrossRef]
- Li, J. (2025). Corporate governance, fraud learning cycles, and financial fraud detection: Evidence from Chinese listed firms. Research in International Business and Finance, 76, 102832. [Google Scholar] [CrossRef]
- Li, T., Kou, G., Peng, Y., & Yu, P. S. (2021). An integrated cluster detection, optimization, and interpretation approach for financial data. IEEE Transactions on Cybernetics, 52(12), 13848–13861. [Google Scholar] [CrossRef]
- Lin, D. (2024). Key considerations to be applied while leveraging machine learning for financial statement fraud detection: A review. IEEE Access, 12, 168213–168228. [Google Scholar] [CrossRef]
- Masruroh, S., & Carolina, A. (2022). Beneish model: Detection of indications of financial statement fraud using CEO characteristics. Asia Pacific Fraud Journal, 7(1), 85–101. [Google Scholar] [CrossRef]
- Mutmainah, I., & Mahmudah, D. A. (2025). The moderation effect of Islamic corporate governance on fraud financial statement detection using fraud hexagon. Jurnal Akuntansi Aktual, 11(2), 125–146. [Google Scholar] [CrossRef]
- Naldo, R. R., & Widuri, R. (2023). Fraudulent financial reporting and fraud hexagon: Evidence from infrastructure companies in ASEAN. In Economic affairs (New Delhi) (Vol. 68, Issue 3, pp. 1455–1468). AESSRA. [Google Scholar] [CrossRef]
- Oktaviany, F., & Reskino, R. (2023). Financial statement fraud: Pengujian Fraud Hexagon dengan moderasi audit committee. Jurnal Bisnis Dan Akuntansi, 25(1), 91–118. [Google Scholar] [CrossRef]
- Owusu, G. M. Y., Koomson, T. A. A., Alipoe, S. A., & Kani, Y. A. (2022). Examining the predictors of fraud in state-owned enterprises: An application of the fraud triangle theory. Journal of Money Laundering Control, 25(2), 427–444. [Google Scholar] [CrossRef]
- Quick, R., Toledano, D. S., & Toledano, J. S. (2024). Measures for enhancing auditor independence: Perceptions of Spanish non-professional investors and auditors. European Research on Management and Business Economics, 30(2), 100250. [Google Scholar] [CrossRef]
- Rashid, M., Khan, N. U., Riaz, U., & Burton, B. (2023). Auditors’ perspectives on financial fraud in Pakistan—Audacity and the need for legitimacy. Journal of Accounting in Emerging Economies, 13(1), 167–194. [Google Scholar] [CrossRef]
- Rijsenbilt, A., & Commandeur, H. (2013). Narcissus enters the courtroom: CEO narcissism and fraud. Journal of Business Ethics, 117(2), 413–429. [Google Scholar] [CrossRef]
- Rostami, V., & Rezaei, L. (2022). Corporate governance and fraudulent financial reporting. Journal of Financial Crime, 29(3), 1009–1026. [Google Scholar] [CrossRef]
- Sahla, W. A., & Ardianto, A. (2023). Ethical values and auditors fraud tendency perception: Testing of fraud pentagon theory. Journal of Financial Crime, 30(4), 966–982. [Google Scholar] [CrossRef]
- Salehi, M., Ammar Ajel, R., & Zimon, G. (2023). The relationship between corporate governance and financial reporting transparency. Journal of Financial Reporting and Accounting, 21(5), 1049–1072. [Google Scholar] [CrossRef]
- Sari, M. P., Mahardika, E., Suryandari, D., & Raharja, S. (2022). The audit committee as moderating the effect of hexagon’s fraud on fraudulent financial statements in mining companies listed on the Indonesia stock exchange. Cogent Business and Management, 9(1), 2150118. [Google Scholar] [CrossRef]
- Sari, M. P., Sihombing, R. M., Utaminingsih, N. S., Jannah, R., & Raharja, S. (2024). Analysis of hexagon on fraudulent financial reporting with the audit committee and independent commissioners as moderating variables. Quality—Access to Success, 25(198), 10–19. [Google Scholar] [CrossRef]
- Setiawan, N., & Soewarno, N. (2025a). Corporate culture and managers fraud tendency perception: Testing of Fraud Hexagon theory. Cogent Social Sciences, 11(1), 2434953. [Google Scholar] [CrossRef]
- Setiawan, N., & Soewarno, N. (2025b). The examination of asset misappropriations in managers’ workplaces using hexagon’s fraud and the moderating impact of perceived strength of internal control. Journal of Financial Crime, 32(4), 860–877. [Google Scholar] [CrossRef]
- Struckell, E. M., Patel, P. C., Ojha, D., & Oghazi, P. (2022). Financial literacy and self employment–The moderating effect of gender and race. Journal of Business Research, 139, 639–653. [Google Scholar] [CrossRef]
- Sudrajat, S., Suryadnyana, N. A., & Supriadi, T. (2023). Fraud hexagon: Detection of fraud of financial report in state-owned enterprises in Indonesia. Jurnal Tata Kelola Dan Akuntabilitas Keuangan Negara, 9(1), 87–102. [Google Scholar] [CrossRef]
- Tibshirani, R. J., & Efron, B. (1993). An introduction to the bootstrap. Monographs on Statistics and Applied Probability, 57(1), 1–436. Available online: https://web.archive.org/web/20170808144050id_/http://cindy.informatik.uni-bremen.de/cosy/teaching/CM_2011/Eval3/pe_efron_93.pdf (accessed on 23 November 2025).
- Viana, D. B. C., Jr., Lourenço, I., & Black, E. L. (2022). Financial distress, earnings management and big 4 auditors in emerging markets. Accounting Research Journal, 35(5), 660–675. [Google Scholar] [CrossRef]
- Vousinas, G. L. (2019). Advancing theory of fraud: The S.C.O.R.E. model. Journal of Financial Crime, 26(1), 372–381. [Google Scholar] [CrossRef]
- Wahyuningtyas, E. T., & Aisyaturrahmi, A. (2022). The incidence of accounting fraud is increasing: Is it a matter of the gender of chief financial officers? Journal of Financial Crime, 29(4), 1420–1442. [Google Scholar] [CrossRef]
- Wang, Y., Lin, Y., Fu, X., & Chen, S. (2023). Institutional ownership heterogeneity and ESG performance: Evidence from China. Finance Research Letters, 51, 103448. [Google Scholar] [CrossRef]
- Wolfe, D. T., & Hermanson, D. R. (2004). The fraud diamond: Considering the four elements of fraud. CPA Journal, 74(12), 38–42. Available online: https://digitalcommons.kennesaw.edu/cgi/viewcontent.cgi?article=2546&context=facpubs (accessed on 22 May 2025).
- Wulandari, R., & Maulana, A. (2022). Institutional ownership as moderation variable of fraud triangle on fraudulent financial statement. Jurnal ASET (Akuntansi Riset), 14(2), 207–222. [Google Scholar] [CrossRef]
- Yang, D., Jiao, H., & Buckland, R. (2017). The determinants of financial fraud in Chinese firms: Does corporate governance as an institutional innovation matter? Technological Forecasting and Social Change, 125, 309–320. [Google Scholar] [CrossRef]
- Yaumil, I., & Thaifur, M. (2025). Exploratory study of factors influencing fraud in the national health service in Buton Islands from a hexagon model perspective. Healthcare in Low Resource Settings, 13(1), 12773. [Google Scholar] [CrossRef]
- Zin, S. F. B. M., Marzuki, M. M., & Abdulatiff, N. K. H. (2020). The likelihood of fraudulent financial reporting: The new implementation of Malaysian code of corporate governance (MCCG) 2017. International Journal of Financial Research, 11(3), 84–91. [Google Scholar] [CrossRef]

| No | Criteria | Total Data |
|---|---|---|
| 1 | Banking institution that maintained its listing on the Indonesia Stock Exchange throughout the 2021–2024 period. | 49 |
| 2 | Banking institution that failed to publish its annual and financial reports consistently throughout the 2021–2024 period. | (6) |
| 3 | Banking institutions that fail to disclose the necessary data | (8) |
| 4 | Total observation data | 35 |
| Total observation data sample (35 × 4 years) | 140 |
| Variables | N | Min | Q1 | Median | Q3 | Max | Mean | SD |
|---|---|---|---|---|---|---|---|---|
| Leverage (Lev) | 140 | 0.12 | 0.24 | 0.33 | 0.42 | 0.87 | 0.321 | 0.151 |
| Ineffective Monitoring (BDOUT) | 140 | 0.20 | 0.27 | 0.33 | 0.39 | 0.67 | 0.333 | 0.102 |
| Auditor Switching (AChange) | 140 | 0 | 0 | 0 | 1 | 1 | 0.29 | 0.454 |
| Director Change (DChange) | 140 | 0 | 0 | 0 | 1 | 1 | 0.18 | 0.384 |
| CEO Picture (CEOPic) | 140 | 1 | 2 | 2 | 3 | 6 | 2.45 | 1.10 |
| Political connections (PolCon) | 140 | 0 | 0 | 0 | 1 | 1 | 0.24 | 0.428 |
| Audit Committee (AudCom) | 140 | 0.20 | 0.38 | 0.51 | 0.62 | 0.80 | 0.51 | 0.17 |
| Fraudulent Financial Reporting (FFR) | 140 | 0 | 0 | 0 | 1 | 1 | 0.36 | 0.480 |
| Model Fit and Quality Indices | Fit Criteria | Analysis Results | Decision |
|---|---|---|---|
| Average Path Coefficient (A.P.C.) | p < 0.1 | p = 0.039 | Accepted |
| Average R-Squared (A.R.S.) | p < 0.1 | p < 0.001 | Accepted |
| Average Adjusted R-Squared (A.A.R.S.) | p < 0.1 | p < 0.001 | Meet the Creteria |
| Average block V.I.F. (A.V.I.F.) | Acceptable if ≤5, ideally ≤3.3 | 1.294 | Ideal |
| Average full collinearity V.I.F. (A.F.V.I.F.) | Acceptable if ≤5, ideally ≤3.3 | 1.397 | Ideal |
| Tenenhaus GoF (GoF) | Small ≥ 0.1, medium ≥ 0.25, | 0.524 | Large |
| Simpson’s paradox ratio (S.P.R.) | Acceptable if ≥0.7, ideally = 1 | 0.889 | Accepted |
| R-squared contribution ratio (R.S.C.R.) | Acceptable if ≥0.9, ideally = 1 | 0.992 | Accepted |
| Statistical suppression ratio (S.S.R.) | Acceptable if ≥0.7 | 0.667 | Meet the Creteria |
| Nonlinear bivariate causality direction ratio (N.L.B.C.D.R.) | Acceptable if ≥0.7 | 1 | Accepted |
| (A) | ||||
| No | Variable | Proxy | Measurement | Source |
| 1 | Pressure | Leverage (Lev) | Total Debt/Total Asset | (Achmad et al., 2022a; Naldo & Widuri, 2023; Bader et al., 2024) |
| 2 | Opportunity | Ineffective Monitoring (BDOUT) | Total Independent Commissioners/Total Commissioners | (Achmad et al., 2024) |
| 3 | Arrogance | CEO Picture (CEOPic) | Measured by the number of CEO photographs appearing in the company’s annual report. A higher count indicates higher managerial arrogance. | (Biduri & Tjahjadi, 2024; Handoko & Salim, 2022) |
| 4 | Audit Committee | Audit Committee (AudCom) | Members of audit committee with accounting expertise/total members | (Handoko & Salim, 2022; Alfarago & Mabrur, 2022) |
| (B) | ||||
| No | Variable | Proxy | Measurement | Source |
| 1 | Rationalization | Auditor Switching (Achange) | 1 = if external auditor changed; 0 = otherwise | (Sari et al., 2024; Achmad et al., 2022a; Handoko & Salim, 2022) |
| 2 | Capability | Director Change (Dchange) | Dummy variable: 1 if there is a change in CEO or President Director during the year; 0 otherwise. | (Handoko & Salim, 2022; Alfarago & Mabrur, 2022; Sari et al., 2024) |
| 3 | Collusion | Political Connections (PolCon) | 1 = if independent commissioner holds concurrent public office; 0 = otherwise | (Biduri & Tjahjadi, 2024; Handoko & Salim, 2022) |
| 4 | Fraudulent Financial Reporting | F-Score (FFR) | RSST = ∆WC + ∆NCO + ∆FIN) ⁄A erage total assets where WC = [Current Assets − Cash and Short-term Investments] − [Current Liabilities − Debt in Current Liabilities] NCO = [Total Assets − Current Assets − Investments and Advances] − [Total Liabilities − Current Liabilities − Long-term Debt] FIN = [Short-term Investments + Long-term Investments] − [Long-term Debt + Debt inCurrent Liabilities + Preferred Stock] ∆REC = ∆Accounts Receivable ÷ Average total assets ∆INV = Inventory ÷ Average total assets SOFTASSETS = [Total Assets − PP&E − Cash and Cash Equivalent] ÷ Total Assets ∆CS = [Sales − ∆Accounts Receivable] ∆ROA = [Earnings t ÷ Average total assets t] − [Earnings t − 1 ÷ Average total assets t − 1] ISSUE An indicator variable coded 1 if the firm issued securities during year t, if not coded 0. | (Dechow et al., 2011) |
| Path | Direction (Path) | p-Value (α = 5%) | Path Coefficient | Decision |
|---|---|---|---|---|
| H1 = Lev --> FFR | − | 0.001 | −0.250 | Rejected |
| H2 = InMon --> FFR | + | 0.003 | 0.225 | Accepted |
| H3 = Achange --> FFR | + | 0.041 | 0.144 | Accepted |
| H4 = Dchange --> FFR | + | 0.018 | 0.173 | Accepted |
| H5 = CeoPic --> FFR | − | 0.033 | −0.151 | Rejected |
| H6 = PolCon --> FFR | − | 0.180 | −0.076 | Rejected |
| H7 = Lev × AudCom --> FFR | − | 0.143 | −0.089 | Rejected |
| H8 = InMon × AudCom --> FFR | + | 0.205 | 0.069 | Rejected |
| H9 = Achange × AudCom --> FFR | − | 0.281 | −0.049 | Rejected |
| H10 = Dchange × AudCom --> FFR | − | 0.311 | −0.041 | Rejected |
| H11 = CeoPic × AudCom --> FFR | + | <0.001 | 0.281 | Rejected |
| H12 = PolCon × AudCom --> FFR | − | 0.016 | −0.176 | Accepted |
| Path | R Square | Path Coefficient | Total Effect | Effect Size, f-Square | |
|---|---|---|---|---|---|
| STAGE 1 | Lev → FFR | 0.124 | −0.206, p = 0.006 | −0.206, p = 0.006 | 0.048, p ≤ 0.001 |
| InMon → FFR | 0.205, p = 0.006 | 0.205, p = 0.006 | 0.033, p ≤ 0.001 | ||
| Achange → FFR | 0.156, p = 0.029 | 0.156, p = 0.029 | 0.022, p ≤ 0.001 | ||
| Dchange → FFR | 0.176, p = 0.016 | 0.176, p = 0.016 | 0.024, p ≤ 0.001 | ||
| CeoPic → FFR | −0.072, p = 0.195 | −0.072, p = 0.195 | 0.013, p ≤ 0.001 | ||
| PolCon → FFR | −0.126, p = 0.063 | −0.126, p = 0.063 | 0.020, p ≤ 0.001 | ||
| STAGE 2 | Lev → FFR | 0.152 | −0.251, p = 0.005 | −0.251, p = 0.005 | 0.059, p ≤ 0.001 |
| InMon → FFR | 0.228, p ≤ 0.001 | 0.228, p ≤ 0.001 | 0.037, p ≤ 0.001 | ||
| Achange → FFR | 0.144, p = 0.040 | 0.144, p = 0.040 | 0.020, p ≤ 0.001 | ||
| Dchange → FFR | 0.153, p = 0.025 | 0.153, p = 0.025 | 0.021, p ≤ 0.001 | ||
| CeoPic → FFR | −0.132, p = 0.050 | −0.132, p = 0.050 | 0.024, p ≤ 0.001 | ||
| PolCon → FFR | −0.096, p = 0.110 | −0.096, p = 0.110 | 0.015, p ≤ 0.001 | ||
| Lev × AudCom → FFR | −0.065, p = 0.181 | −0.065, p = 0.181 | 0.003, p ≤ 0.001 | ||
| InMon × AudCom → FFR | 0.018, p = 0.410 | 0.018, p = 0.410 | 0.000, p ≤ 0.001 | ||
| Achange × AudCom → FFR | −0.068, p = 0.204 | −0.068, p = 0.204 | 0.003, p ≤ 0.001 | ||
| Dchange × AudCom → FFR | −0.035, p = 0.322 | −0.035, p = 0.322 | 0.000, p ≤ 0.001 | ||
| CeoPic × AudCom → FFR | 0.248, p = 0.007 | 0.248, p = 0.007 | 0.028, p ≤ 0.001 | ||
| PolCon × AudCom → FFR | −0.157, p = 0.033 | −0.157, p = 0.033 | 0.017, p ≤ 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pamungkas, I.D.; Oktafiyani, M.; Swatyayana, P.A.; Kurniawati, R.; Putri, A.A.; Alfared, M.A.A. Can Corporate Governance Structures Reduce Fraudulent Financial Reporting in the Banking Sector? Insights from the Fraud Hexagon Framework. J. Risk Financial Manag. 2025, 18, 698. https://doi.org/10.3390/jrfm18120698
Pamungkas ID, Oktafiyani M, Swatyayana PA, Kurniawati R, Putri AA, Alfared MAA. Can Corporate Governance Structures Reduce Fraudulent Financial Reporting in the Banking Sector? Insights from the Fraud Hexagon Framework. Journal of Risk and Financial Management. 2025; 18(12):698. https://doi.org/10.3390/jrfm18120698
Chicago/Turabian StylePamungkas, Imang Dapit, Melati Oktafiyani, Prasada Agra Swatyayana, Rahma Kurniawati, Annisa Amelia Putri, and Mohamed Abdulwahb Ali Alfared. 2025. "Can Corporate Governance Structures Reduce Fraudulent Financial Reporting in the Banking Sector? Insights from the Fraud Hexagon Framework" Journal of Risk and Financial Management 18, no. 12: 698. https://doi.org/10.3390/jrfm18120698
APA StylePamungkas, I. D., Oktafiyani, M., Swatyayana, P. A., Kurniawati, R., Putri, A. A., & Alfared, M. A. A. (2025). Can Corporate Governance Structures Reduce Fraudulent Financial Reporting in the Banking Sector? Insights from the Fraud Hexagon Framework. Journal of Risk and Financial Management, 18(12), 698. https://doi.org/10.3390/jrfm18120698

