Do Global Uncertainty Factors Matter More to Cryptocurrency?
Abstract
1. Introduction
2. Literature Review
3. Data and Methodology
4. Empirical Results
4.1. Preliminary Analysis
4.2. Results from the Mackey–Glass Model
4.3. Results of the BEKK-GARCH Model
4.4. Robustness Test
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
| Acronym | Description |
|---|---|
| Panel A: The U.S. Categorical EPU | |
| MOP | Monetary Policy |
| FIS | Fiscal Policy |
| TAX | Taxes |
| GOV | Government Spending |
| NAC | National Security |
| ENP | Entitlement Programs |
| REG | Regulation |
| FNG | Financial Regulation |
| TRP | Trade Policy |
| SDC | Sovereign Debt, Currency Crises |
| Panel B: Global Risk Factor | |
| GOLD | Gold Volatility Index |
| OIL | Oil Volatility Index |
| IDV | Infectious Disease Equity Market Volatility Index |
| VIX | CBOE Volatility Index |
| GPRD | Geopolitical Risk Index |
| WUI | World Uncertainty Index |
| Panel C: Cryptocurrency | |
| BGCI | Bloomberg Cryptocurrency Index |
| 1 | 2024 Nobel Prize winner in Economics. |
| 2 | https://bitcointreasuries.net/ accessed on 8 July 2024. |
| 3 | SEC approved the first spot Bitcoin ETFs in January 2024 and CME launched Bitcoin futures trading in December of 2017 and the trading was discontinued in 2019. |
| 4 | In the U.S., cryptocurrencies are regulated by federal and state authorities, with the SEC treating them as securities, the CFTC as commodities, and the IRS taxing them as property (Krivoruchko et al., 2018). The EU has a more unified approach with regulations through the Markets in Crypto-Assets (MiCA) framework, which aims to establish comprehensive regulations across member countries (Hacker & Thomale, 2018). Tax policies vary by country, but some nations offer favorable tax rates to attract cryptocurrency investments. |
| 5 | https://www.policyuncertainty.com/categorical_epu.html accessed on 7 June 2024. |
| 6 | The Bloomberg Galaxy Crypto Index is a benchmark, with its constituent weights of eleven largest cryptocurrencies including Bitcoin at 35%, Ethereum at 35%, Cardano at 6.62%, Polygon at 4.5%, Litecoin at 3.28%, Solana at 3.15%, Uniswap at 2.53%, Avalanche at 2.38%, Chainlink at 2.09% and Cosmos at 1.74% at the end of 2022. The combined weights of the two largest cryptocurrencies, BTC and ETH, constitute 70% of the index, mirroring the aggregate of their market capitalizations. |
| 7 | https://worlduncertaintyindex.com/data/ accessed on 5 April 2024. |
References
- Acemoglu, D. (2023). The end of democratic capitalism? How inequality and insecurity fueled a crisis in the west. Foreign Affairs, 102(4), 172–180. [Google Scholar]
- Ali, M. H., Schinckus, C., Uddin, M. A., & Pahlevansharif, S. (2023). Asymmetric effects of economic policy uncertainty on Bitcoin’s hedging power. Studies in Economics and Finance, 40(2), 213–229. [Google Scholar] [CrossRef]
- Anamika, M. C., & Subramaniam, S. (2023). Does sentiment impact cryptocurrency? Journal of Behavioral Finance, 24(2), 202–218. [Google Scholar] [CrossRef]
- Aysan, A. F., Demir, E., Gozgor, G., & Lau, C. K. M. (2019). Effects of the geopolitical risks on Bitcoin returns and volatility. Research in International Business and Finance, 47, 511–518. [Google Scholar] [CrossRef]
- Baker, S. R., Bloom, N., & Davis, S. J. (2016). Measuring economic policy uncertainty. The Quarterly Journal of Economics, 131(4), 1593–1636. [Google Scholar] [CrossRef]
- Baum, C. F., Hurn, S., & Otero, J. (2025). The dynamics of U.S. industrial production: A time-varying Granger causality perspective. Econometrics and Statistics, 33, 13–22. [Google Scholar] [CrossRef]
- Bauri, D. G., Hong, K., & Lee, A. D. (2018). Bitcoin: Medium of exchange or speculative assets? Journal of International Financial Markets, Institutions and Money, 54, 177–189. [Google Scholar] [CrossRef]
- Bouri, E., Molnár, P., Azzi, G., Roubaud, D., & Hagfors, L. I. (2017). On the hedge and safe haven properties of Bitcoin: Is it really more than a diversifier? Finance Research Letters, 20, 192–198. [Google Scholar] [CrossRef]
- Bouri, E., Shahzad, S. J. H., Roubaud, D., Kristoufek, L., & Lucey, B. (2020). Bitcoin, gold, and commodities as safe havens for stocks: New insight through wavelet analysis. The Quarterly Review of Economics and Finance, 77, 156–164. [Google Scholar] [CrossRef]
- Caporin, M., & McAleer, M. (2012). Do we really need both BEKK and DCC? A tale of two multivariate GARCH models. Journal of Economic Surveys, 26(4), 736–751. [Google Scholar] [CrossRef]
- Chen, J., Jiang, F., Xue, S., & Yao, J. (2019). The world predictive power of US equity market skewness risk. Journal of International Money and Finance, 96, 210–227. [Google Scholar] [CrossRef]
- Cheng, H.-P., & Yen, K.-C. (2020). The relationship between the economic policy uncertainty and the cryptocurrency market. Finance Research Letters, 35, 101308. [Google Scholar] [CrossRef]
- Chu, J., Chan, S., Nadarajah, S., & Osterrieder, J. (2017). GARCH modelling of cryptocurrencies. Journal of Risk and Financial Management, 10(4), 17. [Google Scholar] [CrossRef]
- Corbet, S., Hou, Y. G., Hu, Y., Larkin, C., Lucey, B., & Oxley, L. (2022). Cryptocurrency liquidity and volatility interrelationships during the COVID-19 pandemic. Finance Research Letters, 45, 102137. [Google Scholar] [CrossRef]
- Corbet, S., Lucey, B., Peat, M., Vigne, S., Saadouni, B., & Mehandjiev, N. (2019). What sort of asset? Bitcoin analysed. In Enterprise applications, markets and services in the finance industry (Vol. 345, pp. 52–65). Springer International Publishing AG. [Google Scholar]
- Demir, E., Gozgor, G., Lau, C. K. M., & Vigne, S. A. (2018). Does economic policy uncertainty predict the Bitcoin returns? An empirical investigation. Finance Research Letters, 26, 145–149. [Google Scholar] [CrossRef]
- Engle, F., & Kroner, F. (1995). Multivariate simultaneous generalized arch. Econometrica, 11(1), 122–150. [Google Scholar] [CrossRef]
- Fang, T., Su, Z., & Yin, L. (2020). Economic fundamentals or investor perceptions? The role of uncertainty in predicting long-term cryptocurrency volatility. International Review of Financial Analysis, 71, 101566. [Google Scholar] [CrossRef]
- Garcia-Jorcano, L., & Benito, S. (2020). Studying the properties of the Bitcoin as a diversifying and hedging asset through a copula analysis: Constant and time-varying. Research in International Business and Finance, 54, 101300. [Google Scholar] [CrossRef]
- Ghorbel, A., & Jeribi, A. (2021). Investigating the relationship between volatilities of cryptocurrencies and other financial assets. Decisions in Economics and Finance, 44(2), 817–843. [Google Scholar] [CrossRef]
- Gill-de-Albornoz, B., Lafuente, J. A., Monfort, M., & Ordoñez, J. (2024). Bitcoin attention and economic policy uncertainty. Finance Research Letters, 60, 104839. [Google Scholar] [CrossRef]
- Hacker, P., & Thomale, C. (2018). Crypto-securities regulation: ICOs, token sales and cryptocurrencies under EU financial law. European Company and Financial Law Review, 15(4), 645–696. [Google Scholar] [CrossRef]
- Haq, I. U., Ferreira, P., Quintino, D. D., Huynh, N., & Samantreeporn, S. (2023). Economic policy uncertainty, energy and sustainable cryptocurrencies: Investigating dynamic connectedness during the COVID-19 pandemic. Economies, 11(3), 76. [Google Scholar] [CrossRef]
- Hassan, M. K., Hasan, M. B., & Rashid, M. M. (2021). Using precious metals to hedge cryptocurrency policy and price uncertainty. Economics Letters, 206, 109977. [Google Scholar] [CrossRef]
- Hassan, T. A., Hollander, S., van Lent, L., & Tahoun, A. (2019). Firm-level political risk: Measurement and effects. The Quarterly Journal of Economics, 134(4), 2135–2202. [Google Scholar] [CrossRef]
- Hsu, S. H., Sheu, C., & Yoon, J. (2021). Risk spillovers between cryptocurrencies and traditional currencies and gold under different global economic conditions. The North American Journal of Economics and Finance, 57, 101443. [Google Scholar] [CrossRef]
- Jiang, Y., Wu, L., Tian, G., & Nie, H. (2021). Do cryptocurrencies hedge against EPU and the equity market volatility during COVID-19?–New evidence from quantile coherency analysis. Journal of International Financial Markets, Institutions and Money, 72, 101324. [Google Scholar] [CrossRef]
- Jin, J., Yu, J., Hu, Y., & Shang, Y. (2019). Which one is more informative in determining price movements of hedging assets? Evidence from Bitcoin, gold and crude oil markets. Physica A: Statistical Mechanics and its Applications, 527, 121121. [Google Scholar] [CrossRef]
- Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(4), 263–291. [Google Scholar] [CrossRef]
- Krivoruchko, S., Ponamorenko, V., & Nebera, A. (2018). Central bank policy and cryptocurrencies. Journal of Reviews on Global Economics, 7(1), 549–561. [Google Scholar] [CrossRef]
- Lee, A. D., Li, M., & Zheng, H. (2020). Bitcoin: Speculative asset or innovative technology? Journal of International Financial Markets, Institutions and Money, 67, 101209. [Google Scholar] [CrossRef]
- Li, Y., & Giles, D. E. (2015). Modelling volatility spillover effects between developed stock markets and asian emerging stock markets. International Journal of Finance and Economics, 20(2), 155–177. [Google Scholar] [CrossRef]
- Long, H., Demir, E., Będowska-Sójka, B., Zaremba, A., & Shahzad, S. J. H. (2022). Is geopolitical risk priced in the cross-section of cryptocurrency returns? Finance Research Letters, 49, 103131. [Google Scholar] [CrossRef]
- Mackey, M. C., & Glass, L. (1977). Oscillation and chaos in physiological control systems. Science, 197, 287–289. [Google Scholar] [CrossRef]
- Mensi, W., Fasanya, I. O., Vo, X. V., & Kang, S. H. (2025). Dynamics of extreme spillovers across European sustainability markets. Eurasian Economic Review, 15, 225–258. [Google Scholar] [CrossRef]
- Mokni, K. (2021). When, where, and how economic policy uncertainty predicts Bitcoin returns and volatility? A quantiles-based analysis. The Quarterly Review of Economics and Finance, 80, 65–73. [Google Scholar] [CrossRef]
- Ngene, G., & Wang, J. (2024). Arbitrage opportunities and feedback trading in regulated bitcoin futures market: An intraday analysis. International Review of Economics and Finance, 89(B), 743–776. [Google Scholar] [CrossRef]
- Papaspyropoulos, K. G., & Kugiumtzis, D. (2024). On the validity of granger causality for ecological count time series. Econometrics, 12(2), 13. [Google Scholar] [CrossRef]
- Park, B. J. (2022). The COVID-19 pandemic, volatility, and trading behavior in the bitcoin futures market. Research in International Business and Finance, 59, 101519. [Google Scholar] [CrossRef]
- Singh, S., Bansal, P., & Bhardwaj, N. (2022). Correlation between geopolitical risk, economic policy uncertainty, and Bitcoin using partial and multiple wavelet coherence in P5 + 1 nations. Research in International Business and Finance, 63, 101756. [Google Scholar] [CrossRef]
- Syed, A. A., Ahmed, F., Kamal, M. A., Ullah, A., & Ramos-Requena, J. P. (2022). Is there an asymmetric relationship between economic policy uncertainty, cryptocurrencies, and global green bonds? evidence from the united states of America. Mathematics, 10(5), 720. [Google Scholar] [CrossRef]
- Vo, X. V., & Tran, T. T. A. (2020). Modelling volatility spillovers from the US equity market to ASEAN stock markets. Pacific-Basin Finance Journal, 59, 101246. [Google Scholar] [CrossRef]
- Wang, G. J., Xie, C., Wen, D., & Zhao, L. (2019). When Bitcoin meets economic policy uncertainty (EPU): Measuring risk spillover effect from EPU to Bitcoin. Finance Research Letters, 31, 489–497. [Google Scholar] [CrossRef]
- Wang, J. (2025). The connectedness between cryptocurrency and segmented technology sectors in different regulatory regimes: Causality and machine learning approaches. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5688882 (accessed on 19 August 2025).
- Wang, J., & Micale, J. A. (2024). What happens when the disruptive asset meets the conventional asset? An analysis of cryptocurrency and REIT. Applied Economics, 1–14. [Google Scholar] [CrossRef]
- Wang, J., & Ngene, G. (2018). Symmetric and asymmetric nonlinear causalities between oil prices and the U.S. economic sectors. Review of Quantitative Finance and Accounting, 51(1), 199–218. [Google Scholar] [CrossRef]
- Wang, J., & Ngene, G. M. (2020). Does Bitcoin still own the dominant power? An intraday analysis. International Review of Financial Analysis, 71, 101551. [Google Scholar] [CrossRef]
- Wang, P., Li, X., Shen, D., & Zhang, W. (2020). How does economic policy uncertainty affect the bitcoin market? Research in International Business and Finance, 53, 101234. [Google Scholar] [CrossRef]
- World Bank. (2023). Digital progress and trends report. World Bank. [Google Scholar]
- Xie, Q., Liu, R., Qian, T., & Li, J. (2021). Linkages between the international crude oil market and the Chinese stock market: A BEKK-GARCH-AFD approach. Energy Economics, 102, 105484. [Google Scholar] [CrossRef]
- Yen, K.-C., & Cheng, H.-P. (2021). Economic policy uncertainty and cryptocurrency volatility. Finance Research Letters, 38, 101428. [Google Scholar] [CrossRef]
- Zhao, L., Li, Y., & Yang, G. (2025). Effects of climate policy uncertainty on energy markets: Insights from the BEKK-GARCH model. Applied Economics Letters, 1–6. [Google Scholar] [CrossRef]






| Mean | Median | Max | Min | Std. Dev. | Skewness | Extra Kurtosis | Jarque–Bera | |
|---|---|---|---|---|---|---|---|---|
| Panel A: Global Risk Factors | ||||||||
| GOLD | 0.0002 | −0.0047 | 0.3021 | −0.2657 | 0.0516 | 0.9354 | 4.9506 | *** 1218.3370 |
| OIL | −0.0002 | −0.0054 | 0.8577 | −0.6223 | 0.0749 | 2.0571 | 29.9782 | *** 39,829.4500 |
| VIX | −0.0001 | −0.0080 | 0.4802 | −0.2662 | 0.0751 | 1.2500 | 5.3397 | *** 1512.1790 |
| IDV | −0.0013 | −0.0072 | 3.7296 | −4.4701 | 0.8631 | −0.0776 | 2.0346 | *** 181.1230 |
| GPRD | −0.0016 | −0.0012 | 1.3573 | −1.6366 | 0.4318 | −0.1059 | 0.7912 | *** 29.1810 |
| WUI | −0.0008 | −0.0004 | 0.0567 | −0.0844 | 0.0180 | −0.6271 | 1.4387 | *** 158.4534 |
| Panel B: U.S. Categorical EPU | ||||||||
| MOP | 0.0004 | −0.0034 | 0.1051 | −0.0933 | 0.0224 | 0.5708 | 1.8211 | *** 200.9458 |
| FIS | −0.0002 | −0.0022 | 0.0901 | −0.0754 | 0.0155 | 0.8150 | 3.3007 | *** 589.5019 |
| FNG | 0.0002 | 0.0010 | 0.5045 | −0.2886 | 0.0463 | 1.8536 | 20.4728 | *** 18,830.2500 |
| GOV | 0.0006 | −0.0011 | 0.2281 | −0.2404 | 0.0354 | 0.5083 | 6.8008 | *** 2056.8750 |
| NAC | −0.0001 | −0.0008 | 0.1198 | −0.1097 | 0.0240 | 0.3473 | 1.8967 | *** 177.4765 |
| ENP | −0.0002 | −0.0047 | 0.2593 | −0.1594 | 0.0279 | 1.5041 | 13.6875 | *** 8543.2700 |
| REG | −0.0003 | −0.0065 | 0.1407 | −0.0770 | 0.0203 | 1.6050 | 5.7224 | *** 1872.7100 |
| TAX | −0.0003 | −0.0013 | 0.0926 | −0.0481 | 0.0149 | 1.0386 | 3.8988 | *** 848.9373 |
| TRP | −0.0022 | −0.0062 | 0.3174 | −0.2421 | 0.0472 | 0.4048 | 5.0155 | *** 1122.7650 |
| SDC | −0.0015 | −0.0008 | 0.2859 | −0.2595 | 0.0540 | −0.1972 | 4.2007 | *** 774.3412 |
| Panel C: Cryptocurrency | ||||||||
| BGCI | 0.0019 | 0.0025 | 0.1983 | −0.2961 | 0.0450 | −0.7022 | 4.8154 | *** 1094.4960 |
| Null Hypothesis | (1) | (2) | (3) |
|---|---|---|---|
| Panel A: Global Risk Factor | |||
| GOLD does not cause BGCI | *** 8.8243 | *** 53.1449 | *** 31.4277 |
| BGCI does not cause GOLD | *** 8.8226 | *** 43.7976 | *** 54.3834 |
| OIL does not cause BGCI | 0.0338 | * 3.0855 | ** 7.8944 |
| BGCI does not cause OIL | * 3.0656 | *** 9.2897 | *** 7.2923 |
| IDV does not cause BGCI | 0.0000 | 0.0320 | ** 4.0890 |
| BGCI does not cause IDV | 0.4022 | 0.3517 | 1.1485 |
| VIX does not cause BGCI | 1.0800 | 0.3515 | * 2.7587 |
| BGCI does not cause VIX | *** 8.7132 | *** 15.4818 | *** 25.3716 |
| GPRD does not cause BGCI | 0.0899 | * 3.6441 | 0.2300 |
| BGCI does not cause GPRD | ** 4.7675 | 1.6652 | ** 5.6944 |
| WUI does not cause BGCI | 2.0881 | 0.1657 | * 2.9408 |
| BGCI does not cause WUI | ** 3.2708 | ** 6.2709 | ** 5.2497 |
| Panel B: Categorical US EPU | |||
| MOP does not cause BGCI | 0.0670 | 1.0635 | 1.1425 |
| BGCI does not cause MOP | 0.4023 | 2.3808 | 0.7367 |
| FIS does not cause BGCI | 0.0044 | 0.0955 | 1.7091 |
| BGCI does not cause FIS | 0.1906 | 0.7324 | 1.1729 |
| TAX does not cause BGCI | 0.2696 | 0.0272 | * 2.9400 |
| BGCI does not cause TAX | 0.3437 | 0.8402 | 0.6802 |
| GOV does not cause BGCI | 0.4682 | 0.3764 | 0.1691 |
| BGCI does not cause GOV | 1.8995 | 2.4315 | * 3.4556 |
| NAC does not cause BGCI | 0.1742 | *** 8.1053 | 1.1851 |
| BGCI does not cause NAC | ** 4.8099 | *** 8.5128 | 0.8654 |
| ENP does not cause BGCI | 0.0026 | 0.0808 | 0.7399 |
| BGCI does not cause ENP | 0.1234 | 1.2414 | 0.1322 |
| REG does not cause BGCI | 0.4937 | 0.4229 | 0.9869 |
| BGCI does not cause REG | ** 5.5785 | ** 5.1083 | * 2.9511 |
| FNG does not cause BGCI | 0.5475 | 0.0516 | 1.0292 |
| BGCI does not cause FNG | 0.7653 | ** 5.7147 | 1.3670 |
| TRP does not cause BGCI | 0.5421 | 0.1058 | 0.2767 |
| BGCI does not cause TRP | 1.0852 | ** 4.5349 | ** 5.2490 |
| SDC does not cause BGCI | 0.5303 | 0.5303 | 0.0499 |
| BGCI does not cause SDC | ** 4.0618 | ** 4.0618 | 0.3989 |
| BGCI- GOLD | BGCI- OIL | BGCI- IDV | BGCI- VIX | BGCI- GPRD | BGCI- WUI | |
|---|---|---|---|---|---|---|
| ** 0.0033 | * 0.0025 | *** 0.0038 | * 0.0023 | ** 0.0033 | *** 0.003 | |
| (0.0014) | (0.0014) | (0.0014) | (0.0014) | (0.0014) | (0.0008) | |
| ** −0.0028 | 0.0021 | −0.0034 | −0.0009 | −0.0015 | *** 0.002452 | |
| −(0.0029) | (0.0015) | (0.0031) | (0.0023) | (0.0023) | (0.0006) | |
| C11 | *** 0.3015 | *** −0.2454 | *** −0.4399 | *** 0.1119 | *** 0.4737 | ** 0.0616 |
| (0.0397) | (0.0348) | (0.0429) | (0.0376) | (0.0453) | (0.0299) | |
| C12 | *** −0.1509 | *** 0.2256 | −0.4342 | *** 0.3795 | 0.1202 | 0.0047 |
| (0.0456) | (0.2256) | (0.7007) | (0.0579) | (0.3461) | (0.0333) | |
| C21 | *** −0.1141 | *** −0.0923 | 0.0029 | *** −0.1360 | ** 0.0195 | *** 1.6164 |
| (0.0239) | (0.0178) | (0.0033) | (0.0315) | (0.0063) | (0.1229) | |
| C22 | *** 0.6826 | *** 0.73148 | *** 0.5036 | *** 0.4599 | *** 0.5121 | * −0.2222 |
| (0.0343) | (0.0247) | (0.0570) | (0.0383) | (0.0582) | (0.1241) | |
| B11 | *** 0.0351 | *** 0.0374 | *** −0.0331 | *** 0.0313 | −0.0025 | *** 0.0282 |
| (0.0351) | (0.0026) | (0.0022) | (0.0020) | (0.0926) | (0.0023) | |
| B22 | * 0.0134 | 0.0127 | *** 0.4441 | 0.0176 | 0.0444 | 0.0000 |
| (0.0081) | (0.0163) | (0.0381) | (0.0149) | (83.3383) | (3.2743) | |
| B21 | *** −0.0205 | *** −0.0208 | −0.0842 | *** −0.0561 | −0.3160 | −0.0014 |
| (0.0033) | (0.0070) | (0.0595) | (0.0061) | (11.7218) | (0.0038) | |
| D11 | *** 0.5004 | *** 0.5003 | *** 0.5002 | *** 0.5098 | *** 0.5000 | *** 0.5004 |
| (0.0633) | (0.0967) | (0.0674) | (0.0973) | (0.0839) | (0.0847) | |
| D21 | *** 0.2326 | *** 0.06157 | ** −0.0145 | *** 0.3616 | *** −0.0875 | −0.1072 |
| (0.0271) | (0.0225) | (0.0057) | (0.0585) | (0.0153) | (0.5335) | |
| D22 | *** 0.5000 | *** 0.6854 | *** 0.5612 | *** 0.4342 | ** 0.2463 | −0.4143 |
| (0.0482) | (0.0232) | (0.0797) | (0.0793) | (0.1233) | (0.4568) | |
| D12 | *** 0.4996 | *** 0.4997 | 0.4997 | *** 0.4989 | * 0.4999 | 0.4989 |
| (0.0612) | (0.1252) | (0.7879) | (0.0875) | (0.2771) | (0.0770) | |
| LL | 3503.6170 | 3183.4940 | 737.2873 | 3108.0890 | 1361.5220 | 4737.6990 |
| AIC | −6.6896 | −6.0757 | −1.3850 | −5.9311 | −2.5820 | −9.0560 |
| SIC | −6.6184 | −6.0045 | −1.3138 | −5.8600 | −2.5108 | −8.9848 |
| HQ | −6.6626 | −6.0487 | −1.3580 | −5.9041 | −2.5550 | −9.0290 |
| BGCI-MOP | BGCI-FIS | BGCI-TAX | BGCI-GOV | BGCI-NAC | BGCI-ENP | BGCI-REG | BGCI-FNG | BGCI-TRP | BGCI-SDC | |
|---|---|---|---|---|---|---|---|---|---|---|
| μ1 | ** 0.0021 | ** 0.0022 | 0.0018 | ** 0.0022 | 0.0017 | * 0.0019 | 0.0015 | 0.0008 | ** 0.0023 | * 0.0022 |
| (0.0011) | (0.0011) | (0.0011) | (0.0011) | (0.0011) | (0.0011) | (0.0011) | (0.0012) | (0.0012) | (0.0012) | |
| μ2 | 0.0007 | −0.0015 | −0.0022 | * −0.0020 | 0.0001 | *** −0.0028 | *** −0.0035 | *** 0.0051 | *** −0.0050 | 0.0010 |
| (0.0014) | (0.0014) | (0.0015) | (0.0011) | (0.0014) | (0.0011) | (0.0013) | (0.0009) | (0.0013) | (0.0014) | |
| C11 | *** −0.1298 | *** 0.2711 | *** 0.2342 | *** 0.2205 | *** −0.1589 | *** −0.2216 | *** 0.2079 | * −0.0470 | *** 0.1770 | *** −0.1387 |
| (0.0346) | (0.0375) | (0.0408) | (0.0304) | (0.0277) | (0.0280) | (0.0281) | (0.0241) | (0.0398) | (0.0317) | |
| C12 | −0.0049 | −0.0009 | −0.0036 | −0.0178 | 0.0147 | 0.0054 | −0.0206 | −0.0151 | −0.0368 | 0.0112 |
| (0.0417) | (0.0383) | (0.0476) | (0.0316) | (0.0288) | (0.0409) | (0.0264) | (0.0317) | (0.0390) | (0.0408) | |
| C21 | *** −0.7260 | *** −0.7876 | *** −0.8665 | *** −0.3629 | *** 0.7814 | *** 1.0315 | *** −0.9332 | *** −0.6544 | −0.0064 | *** 0.1889 |
| (0.1472) | (0.1570) | (0.1694) | (0.0824) | (0.0989) | (0.1123) | (0.1360) | (0.0770) | (0.0534) | (0.0610) | |
| C22 | *** 0.2621 | ** 0.2254 | * 0.1955 | *** 0.7851 | *** −0.3188 | *** −0.3568 | *** 0.3030 | *** 0.8715 | *** 0.8766 | *** 0.8043 |
| (0.0878) | (0.0909) | (0.1170) | (0.0557) | (0.0669) | (0.0685) | (0.1103) | (0.0646) | (0.0550) | (0.0501) | |
| B11 | *** 0.0317 | *** 0.0284 | *** 0.0296 | *** 0.0326 | *** 0.0315 | *** 0.0301 | *** 0.0298 | *** 0.0325 | 0.0338 | *** 0.0328 |
| (0.0031) | (0.0021) | (0.0029) | (0.0025) | (0.0023) | (0.0012) | (0.0024) | (0.0026) | (0.0037) | (0.0043) | |
| B22 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 |
| (6.6878) | (1.2860) | (1.3621) | (5.7173) | (65.1881) | (8.9826) | (0.5620) | (43.4214) | (9.1016) | (23.4822) | |
| B21 | −0.0051 | −0.0015 | −0.0024 | −0.0038 | −0.0039 | ** −0.0055 | *** −0.0031 | −0.0034 | −0.0100 | −0.0094 |
| (0.0063) | (0.0045) | (0.0054) | (0.0056) | (0.0043) | (0.0027) | (0.0052) | (0.0059) | (0.0095) | (0.0080) | |
| D11 | *** 0.5003 | 0.5006 | *** 0.5004 | *** 0.5003 | *** 0.5003 | *** 0.5003 | *** 0.5004 | *** 0.5001 | *** 0.5001 | *** 0.5003 |
| (0.1425) | (0.1048) | (0.1256) | (0.1009) | (0.0845) | (0.0506) | (0.0941) | (0.1251) | (0.1550) | (0.1801) | |
| D21 | −0.0472 | 0.1476 | −0.0902 | −0.1816 | −0.0721 | −0.0804 | 0.0053 | * −0.2924 | 0.0178 | *** −0.3377 |
| (0.3338) | (0.2415) | (0.4781) | (0.1409) | (0.3493) | (0.1909) | (0.2616) | (0.1751) | (0.0657) | (0.0422) | |
| D22 | −0.2665 | ** −0.4775 | −0.3869 | ** −0.26857 | −0.3138 | *** −0.2350 | −0.3365 | −0.1889 | *** 0.1251 | *** 0.3499 |
| (0.2946) | (0.2255) | (0.5361) | (0.1330) | (0.2469) | (0.1388) | (0.3355) | (0.1449) | (0.0372) | (0.0742) | |
| D12 | *** 0.4993 | *** 0.4958 | *** 0.4990 | *** 0.4995 | *** 0.4994 | *** 0.4993 | *** 0.4988 | *** 0.4997 | *** 0.4997 | *** 0.4985 |
| (0.1281) | (0.0971) | (0.1179) | (0.1168) | (0.0792) | (0.0486) | (0.0950) | (0.1260) | (0.1763) | (0.1404) | |
| LL | 4533.2730 | 4750.3400 | 4756.4810 | 4315.2710 | 4529.4200 | 4434.2810 | 4635.1320 | 4105.9290 | 4031.4670 | 3932.9680 |
| AIC | −8.6640 | −9.0802 | −9.0920 | −8.2460 | −8.6566 | −8.4742 | −8.8593 | −7.8445 | −7.7018 | −7.5129 |
| SIC | −8.5928 | −9.0090 | −9.0208 | −8.1748 | −8.5854 | −8.4030 | −8.7881 | −7.7734 | −7.6306 | −7.4417 |
| HQ | −8.6370 | −9.0532 | −9.0650 | −8.2190 | −8.6296 | −8.4472 | −8.8323 | −7.8175 | −7.6748 | −7.4859 |
| Null Hypothesis | Categorical U.S. EPU Factors | Global Risk Factors |
|---|---|---|
| −27.9192 | −6.6813 | |
| −27,774.3625 | 65.6841 *** | |
| −4693.8667 | 112.0083 *** | |
| Max Eigenvalue | 0.9173 | 0.9852 |
| LL | 11,213.4302 | −2304.2687 |
| AIC | −21,694.86 | 4860.5373 |
| BIC | −19,882.86 | 5484.3400 |
| HQ | −21,007.62 | 5097.1298 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Verma, R.; Wang, J.; Ngene, G.; Sylla, C. Do Global Uncertainty Factors Matter More to Cryptocurrency? J. Risk Financial Manag. 2025, 18, 628. https://doi.org/10.3390/jrfm18110628
Wang M, Verma R, Wang J, Ngene G, Sylla C. Do Global Uncertainty Factors Matter More to Cryptocurrency? Journal of Risk and Financial Management. 2025; 18(11):628. https://doi.org/10.3390/jrfm18110628
Chicago/Turabian StyleWang, Minxing, Rishabh Verma, Jinghua Wang, Geoffrey Ngene, and Cheickna Sylla. 2025. "Do Global Uncertainty Factors Matter More to Cryptocurrency?" Journal of Risk and Financial Management 18, no. 11: 628. https://doi.org/10.3390/jrfm18110628
APA StyleWang, M., Verma, R., Wang, J., Ngene, G., & Sylla, C. (2025). Do Global Uncertainty Factors Matter More to Cryptocurrency? Journal of Risk and Financial Management, 18(11), 628. https://doi.org/10.3390/jrfm18110628

