A Systematic Review of Artificial Intelligence Applied to Compliance: Fraud Detection in Cryptocurrency Transactions
Abstract
1. Introduction
- What is the current status of publications about Artificial Intelligence (AI) methodologies applied to compliance in the fraud detection in cryptocurrency transactions?
- What are the Artificial Intelligence (AI) methodologies applied to compliance in the fraud detection in cryptocurrency transactions?
- How do machine learning, deep learning algorithms, generative AI and natural language processing contribute to AI-based compliance in cryptocurrency transactions?
2. Materials and Methods
2.1. Methodological Framework
2.2. Data Collection
2.3. Analysis Framework
3. Results
3.1. Publication Trends
3.2. Most Relevant Sources
3.3. Leading Institutions
3.4. Most Cited Articles
3.5. Keywords Analysis
3.6. Further Analysis
3.7. AI Methodologies Applied to Compliance
4. Discussion
4.1. Research Gaps in AI for Compliance
4.2. Perspectives and Future Trends
5. Conclusions
Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| NLP | Natural language processing | 
| AI | Artificial intelligence | 
| MiCA | Markets in Crypto-Assets | 
| PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses | 
| ML | Machine Learning | 
| KNN | K-Nearest Neighbors | 
| GANs | Generative Adversarial Networks | 
| CNN | Convolutional Neural Networks | 
| LSTM | Long Short-Term Memory | 
| GNNs | Graph Neural Networks | 
| CNNs | Neural Networks | 
| CNNs | Convolutional Networks | 
| GATs | Graph Attention Networks | 
| AML/CFT | Anti-Money Laundering and Countering the Financing of Terrorism | 
| AML | Anti-money laundering | 
| SVM | Support Vector Machine | 
References
- Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M., Fieguth, P., Cao, X., Khosravi, A., Acharya, U. R., Makarenkov, V., & Nahavandi, S. (2021). A review of uncertainty quantification in deep learning: Techniques, applications and challenges. Information Fusion, 76, 243–297. [Google Scholar] [CrossRef]
- Act, E. A. I. (2024). The EU artificial intelligence act. European Union. [Google Scholar]
- Ahern, D. (2021). Regulatory lag, regulatory friction and regulatory transition as fintech disenablers: Calibrating an EU response to the regulatory sandbox phenomenon. European Business Organization Law Review (EBOR), 22(3), 395–432. [Google Scholar] [CrossRef]
- Ahmed, S., Alshater, M. M., El Ammari, A., & Hammami, H. (2022). Artificial intelligence and machine learning in finance: A bibliometric review. Research in International Business and Finance, 61, 101646. [Google Scholar] [CrossRef]
- Alapati, N. K., & Valleru, V. (2023). The impact of explainable AI on transparent decision-making in financial systems. Journal of Innovative Technologies, 6(1), 1–5. [Google Scholar]
- Ali, A., Abd Razak, S., Othman, S. H., Eisa, T. A. E., Al-Dhaqm, A., Nasser, M., Elhassan, T., Elshafie, H., & Saif, A. (2022). Financial fraud detection based on machine learning: A systematic literature review. Applied Sciences, 12(19), 9637. [Google Scholar] [CrossRef]
- Alibašić, H. (2023). Developing an ethical framework for responsible artificial intelligence (AI) and machine learning (ML) applications in cryptocurrency trading: A consequentialism ethics analysis. FinTech, 2(3), 430–443. [Google Scholar] [CrossRef]
- Alotibi, J., Almutanni, B., Alsubait, T., Alhakami, H., & Baz, A. (2022). Money laundering detection using machine learning and deep learning. International Journal of Advanced Computer Science and Applications, 13(10), 732–739. [Google Scholar] [CrossRef]
- Aria, M., & Cuccurullo, C. (2017). Bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Infometrics, 11(4), 959–975. [Google Scholar] [CrossRef]
- Arner, D. W., Buckley, R. P., Zetzsche, D. A., & Veidt, R. (2020). Sustainability, fintech and financial inclusion. European Business Organization Law Review (EBOR), 21(1), 7–35. [Google Scholar] [CrossRef]
- Ayinaddis, S. G. (2025). Artificial intelligence adoption dynamics and knowledge in SMEs and large firms: A systematic review and bibliometric analysis. Journal of Innovation & Knowledge, 10(3), 100682. [Google Scholar] [CrossRef]
- Azzutti, A., Ringe, W.-G., & Stiehl, H. S. (2022). The regulation of AI trading from an AI life cycle perspective. European Banking Institute (EBI). [Google Scholar]
- Baabdullah, T., Alzahrani, A., Rawat, D. B., & Liu, C. (2024). Efficiency of Federated learning and blockchain in preserving privacy and enhancing the performance of Credit Card Fraud Detection (CCFD) systems. Future Internet, 16, 196. [Google Scholar] [CrossRef]
- Balarabe, K. (2025). Quantum computing and the law: Navigating the legal implications of a quantum leap. European Journal of Risk Regulation, 1–20. [Google Scholar] [CrossRef]
- Bawack, R. E., Fosso Wamba, S., & Carillo, K. D. A. (2021). A framework for understanding artificial intelligence research: Insights from practice. Journal of Enterprise Information Management, 34(2), 645–678. [Google Scholar] [CrossRef]
- Boella, G., Tosatto, S. C., Ghanavati, S., Hulstijn, J., Humphreys, L., Muthuri, R., & van der Torre, L. (2014). Integrating legal-URN and Eunomos: Towards a comprehensive compliance management solution. In P. Casanovas, U. Pagallo, M. Palmirani, & G. Sartor (Eds.), AI approaches to the complexity of legal systems. AICOL 2013 (Vol. 8929). Lecture Notes in Computer Science (LNAI). Springer. [Google Scholar] [CrossRef]
- Boukherouaa, E. B., Shabsigh, M. G., AlAjmi, K., Deodoro, J., Farias, A., Iskender, E. S., Mirestean, A. T., & Ravikumar, R. (2021). Powering the digital economy: Opportunities and risks of artificial intelligence in finance. International Monetary Fund. [Google Scholar]
- Bradford, S. (1985). Specific subjects. Journal of Information Science, 10(4), 173–180. [Google Scholar]
- Buu, S.-J., & Kim, H.-J. (2023). Disentangled prototypical graph convolutional network for phishing scam detection in cryptocurrency transactions. Electronics, 12, 4390. [Google Scholar] [CrossRef]
- Carcillo, F., Le Borgne, Y.-A., Caelen, O., Kessaci, Y., Oblé, F., & Bontempi, G. (2019). Combining unsupervised and supervised learning in credit card fraud detection. Information Sciences, 557, 317–331. [Google Scholar] [CrossRef]
- Cardo, I. A. R. (2025). El Reglamento europeo de inteligencia artificial: Una primera valoración sobre su (limitado) impacto laboral. Trabajo y Empresa. Revista de Derecho del Trabajo, 4(1), 9–38. [Google Scholar]
- Chen, M., Wei, Z., Huang, Z., Ding, B., & Li, Y. (2020, November). Simple and deep graph convolutional networks. In International conference on machine learning (pp. 1725–1735). PMLR. [Google Scholar]
- Chen, Z., Van Khoa, L. D., Teoh, E. N., Nazir, A., Karuppiah, E. K., & Lam, K. S. (2018). Machine learning techniques for anti-money laundering (AML) solutions in suspicious transaction detection: A review. Knowledge and Information Systems, 57(2), 245–285. [Google Scholar] [CrossRef]
- Chhatwani, M. (2022). Does robo-advisory increase retirement worry? A causal explanation. Managerial Finance, 48, 611–628. [Google Scholar] [CrossRef]
- Chueke, G. V., & Amatucci, M. (2015). O que é bibliometria? Uma introdução ao fórum. Internext, 10(2), 1–5. [Google Scholar] [CrossRef]
- Cutler, A., Cutler, D. R., & Stevens, J. R. (2012). Random forests. In C. Zhang, & Y. Ma (Eds.), Ensemble machine learning. Springer. [Google Scholar] [CrossRef]
- Deodoro, J., Gorbanyov, M., Malaika, M., & Sedik, T. S. (2021). Quantum computing and the financial system: Spooky action at a distance? International Monetary Fund. [Google Scholar]
- Deshpande, A. (2024, April 18–19). Regulatory compliance and AI: Navigating the legal and regulatory challenges of AI in finance. 2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS) (pp. 1–5), Chikkaballapur, India. [Google Scholar] [CrossRef]
- Elmougy, Y., & Manzi, O. (2021, December 11–13). Anomaly detection on bitcoin, ethereum networks using gpu-accelerated machine learning methods. 2021 31st International Conference on Computer Theory and Applications (ICCTA) (pp. 166–171), Alexandria, Egypt. [Google Scholar]
- Fedyk, A., Hodson, J., Khimich, N., & Fedyk, T. (2022). Is artificial intelligence improving the audit process? Review of Accounting Studies, 27(3), 938–985. [Google Scholar] [CrossRef]
- Foidl, H., Felderer, M., & Ramler, R. (2022, May 16–24). Data smells: Categories, causes and consequences, and detection of suspicious data in ai-based systems. 1st International Conference on AI Engineering: Software Engineering for AI (pp. 229–239), Pittsburgh, PA, USA. [Google Scholar]
- Goellner, S., Tropmann-Frick, M., & Brumen, B. (2024). Responsible artificial intelligence: A structured literature review. arXiv, arXiv:2403.06910. [Google Scholar] [CrossRef]
- Grishman, R., & Sundheim, B. M. (1996). Message understanding conference-6: A brief history. In COLING 1996 volume 1: The 16th international conference on computational linguistics. Association for Computational Linguistics. [Google Scholar]
- Gupta, P., Ding, B., Guan, C., & Ding, D. (2024). Generative AI: A systematic review using topic modelling techniques. Data and Information Management, 8(2), 100066. [Google Scholar] [CrossRef]
- Hafez, I. Y., Hafez, A. Y., Saleh, A., Abd El-Mageed, A. A., & Abohany, A. A. (2025). A systematic review of AI-enhanced techniques in credit card fraud detection. Journal of Big Data, 12(1), 6. [Google Scholar] [CrossRef]
- Hamza, C., Lylia, A., Nadine, C., & Nicolas, C. (2023). DEFD: Adapted decision tree ensemble for financial fraud detection. In International conference on information technology-new generations (pp. 255–261). Springer International Publishing. [Google Scholar]
- Haque, A. B., Islam, A. N., & Mikalef, P. (2023). Explainable Artificial Intelligence (XAI) from a user perspective: A synthesis of prior literature and problematizing avenues for future research. Technological Forecasting and Social Change, 186, 122120. [Google Scholar] [CrossRef]
- Herawati, N. (2015). Application of Beneish M-Score models and data mining to detect financial fraud. Procedia-Social and Behavioral Sciences, 211, 924–930. [Google Scholar]
- Herian, R. (2025). As much as faith: A speculation on quantum computing with fiduciary law in public governance. In Public governance and emerging technologies: Values, trust, and regulatory compliance (pp. 217–238). Springer Nature. [Google Scholar]
- Hernandez Aros, L., Bustamante Molano, L. X., Gutierrez-Portela, F., Moreno Hernandez, J. J., & Rodríguez Barrero, M. S. (2024). Financial fraud detection through the application of machine learning techniques: A literature review. Humanities and Social Sciences Communications, 11(1), 1–22. [Google Scholar] [CrossRef]
- Hilal, W., Gadsden, S. A., & Yawney, J. (2022). Financial fraud: A review of anomaly detection techniques and recent advances. Expert Systems with Applications, 193, 116429. [Google Scholar] [CrossRef]
- Huang, Y.-J., Cheng, S., Yang, F.-Q., & Chen, C. (2022). Analysis and visualization of research on resilient cities and communities based on Vosviewer. International Journal of Environmental Research and Public Health, 19, 7068. [Google Scholar] [CrossRef]
- Islam, S., Haque, M. M., & Karim, A. N. M. R. (2024). A rule-based machine learning model for financial fraud detection. International Journal of Electrical and Computer Engineering (IJECE), 14(1), 759–771. [Google Scholar] [CrossRef]
- Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electron Markets, 31, 685–695. [Google Scholar] [CrossRef]
- Joshi, R., Pandey, K., & Kumari, S. (2025). Generative AI: A transformative tool for mitigating risks for financial frauds. In Generative artificial intelligence in finance: Large language models, interfaces, and industry use cases to transform accounting and finance processes (pp. 125–147). Wiley Online Library. [Google Scholar] [CrossRef]
- Kamuangu, P. (2024). A review on financial fraud detection using AI and machine learning. Journal of Economics, Finance and Accounting Studies, 6(1), 67–77. [Google Scholar] [CrossRef]
- Khang, A., Jadhav, B., Hajimahmud, V., & Satpathy, I. (2025). Synergy of AI and fintech in the digital gig economy. CRC Press. [Google Scholar]
- Krishna, V. R., & Boddu, S. (2023). Financial fraud detection using improved artificial humming bird algorithm with modified extreme learning machine. International Journal on Recent and Innovation Trends in Computing and Communication, 11, 5–14. [Google Scholar] [CrossRef]
- Kulkarni, P., Pathak, P., Pillai, S., & Tigga, V. (2025). Role of generative AI for fraud detection and prevention. In Generative artificial intelligence in finance: Large language models, interfaces, and industry use cases to transform accounting and finance processes (pp. 175–198). Wiley Online Library. [Google Scholar]
- Kumari, A. (2024). The role of artificial intelligence in enhancing risk compliance in global enterprises. Shodh Sagar Journal of Artificial Intelligence and Machine Learning, 1(4), 1–4. [Google Scholar] [CrossRef]
- Kuznetsova, N. S. (2024). Explorando la regulación MiCA:: Desafíos en la categorización de los criptoactivos y su interacción con la regulación financiera tradicional. Revista de Derecho del Mercado de Valores, (35), 5. [Google Scholar]
- Lee, J. (2020). Access to finance for artificial intelligence regulation in the financial services industry. European Business Organization Law Review (EBOR), 21, 731–757. [Google Scholar] [CrossRef]
- López-Ibor, A. (2025). A vueltas con el Reglamento MICA. La Ley Unión Europea, (133), 1. [Google Scholar]
- Lui, A., & Lamb, G. W. (2018). Artificial intelligence and augmented intelligence collaboration: Regaining trust and confidence in the financial sector. Information & Communications Technology Law, 27(3), 267–283. [Google Scholar] [CrossRef]
- Mallela, I. R., Aravind, S., Salunkhe, V., Tharan, O., Goel, P. P., & Singh, S. P. (2020). Explainable AI for compliance and regulatory models. International Journal for Research Publication and Seminar, 11, 319–339. [Google Scholar] [CrossRef]
- Miravalls, J. M. (2021). Criptoactivos y regulación: Nueva normativa española y propuesta europea sobre Markets in Crypto-assets (MICA). Revista Española de Capital Riesgo, (3), 41–60. [Google Scholar]
- Miser, E., & Sarioguz, O. (2024). Ethical considerations in AI simulations for designing assistive technologies. Journal of Artificial Intelligence General science (JAIGS), 4(1), 209–218. [Google Scholar] [CrossRef]
- Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., & Stewart, L. A. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. Research Methods & Reporting, 349, g7647. [Google Scholar]
- Müller, R. (2025). How explainable AI affects human performance: A systematic review of the behavioural consequences of saliency maps. International Journal of Human–Computer Interaction, 41(4), 2020–2051. [Google Scholar] [CrossRef]
- Navarrete, C. B., Malverde, M. G. M., Lagos, P. S., & Mujica, A. D. B. (2018). A web-based systematic literature review management software. SoftwareX, 7, 360–372. [Google Scholar] [CrossRef]
- Oveisi, S., Gholamrezaie, F., Gajari, N., Moein, M. S., & Goodarzi, M. (2024). Review of artificial intelligence-based systems: Evaluation, standards, and methods. Advances in the Standards & Applied Sciences, 2(2), 4–29. [Google Scholar] [CrossRef]
- Ozioko, A. C. (2024). The use of artificial intelligence in detecting financial fraud: Legal and ethical considerations. Multi-Disciplinary Research and Development Journals Int’l, 5(1), 66–85. [Google Scholar]
- Packin, N. G. (2024). Emerging compliance in the generative decentralized era. Brooklyn Journal of Corporate, Financial & Commercial Law, 19, 83. [Google Scholar]
- Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71. [Google Scholar] [CrossRef]
- Paripati, L., & Agarwal, A. (2023). The impact of AI on regulatory compliance and anti-money laundering efforts in payment processing. SSRN. Available online: https://ssrn.com/abstract=5052513 (accessed on 31 August 2025).
- Paul, J., Xu, Q., Fei, S., Veeravalli, B., & Aung, K. M. M. (2019). Practically realisable anonymisation of bitcoin transactions with improved efficiency of the zerocoin protocol. In Advances in information and communication networks: Proceedings of the 2018 future of information and communication conference (FICC) (vol. 2, pp. 108–130). Springer International Publishing. [Google Scholar]
- Payer, R. C., Quelhas, O. L. G., & Bergiante, N. C. R. (2024). Framework to supporting monitoring the circular economy in the context of industry 5.0: A proposal considering circularity indicators, digital transformation, and Sustainability. Journal of Cleaner Production, 466, 142850. [Google Scholar] [CrossRef]
- Pettersson Ruiz, E., & Angelis, J. (2021). Combating money laundering with machine learning–applicability of supervised-learning algorithms at cryptocurrency exchanges. Journal of Money Laundering Control, 25(4), 766–778. [Google Scholar] [CrossRef]
- Pérez-Cano, V., & Jurado, F. (2025). Fraud detection in cryptocurrency networks—An exploration using anomaly detection and heterogeneous graph transformers. Future Internet, 17(1), 44. [Google Scholar] [CrossRef]
- Pranto, T. H., Hasib, K. T. A. M., Rahman, T., Haque, A. B., Islam, A. K. M. N., & Rahman, R. M. (2022). Blockchain and machine learning for fraud detection: A privacy-preserving and adaptive incentive based approach. IEEE Access, 10, 87115–87134. [Google Scholar] [CrossRef]
- Qiao, H., Wen, Q., Li, X., Lim, E. P., & Pang, G. (2024). Generative semi-supervised graph anomaly detection. Advances in Neural Information Processing Systems, 37, 4660–4688. [Google Scholar]
- Quevedo-Silva, F., Santos, E. B. A., Brandão, M. M., & Vils, L. (2016). Estudo bibliométrico: Orientações sobre sua aplicação. Revista Brasileira de Marketing, 15(2), 246–262. [Google Scholar] [CrossRef]
- Ravisankar, P., Ravi, V., Rao, G. R., & Bose, I. (2011). Detection of financial statement fraud and feature selection using data mining techniques. Decision Support Systems, 50(2), 491–500. [Google Scholar] [CrossRef]
- Ren, H., Lu, W., Xiao, Y., Chang, X., Wang, X., Dong, Z., & Fang, D. (2022). Graph convolutional networks in language and vision: A survey. Knowledge-Based Systems, 251, 109250. [Google Scholar] [CrossRef]
- Salman, H. A., Kalakech, A., & Steiti, A. (2024). Random forest algorithm overview. Babylonian Journal of Machine Learning, 2024, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Saxena, T., & Thakur, S. S. (2024). Enhanced AML compliance and predictive risk management: Generative AI empowering synthetic blockchain transaction data and financial crisis scenarios. International Journal of Convergent Research, 1(1). [Google Scholar]
- Secinaro, S., Brescia, V., Calandra, D., & Biancone, P. (2020). Employing bibliometric analysis to identify suitable business models for electric cars. Journal of Cleaner Production, 264, 121503. [Google Scholar] [CrossRef]
- Sengupta, K., & Das, P. K. (2023). Detection of financial fraud: Comparisons of some tree-based machine learning approaches. Journal of Data, Information and Management, 5(1), 23–37. [Google Scholar] [CrossRef]
- Sharma, A., & Babbar, H. (2023, November 1–2). Machine learning-driven detection and prevention of cryptocurrency fraud. 2023 International Conference on Research Methodologies in Knowledge Management, Artificial Intelligence and Telecommunication Engineering (RMKMATE) (pp. 1–5), Chennai, India. [Google Scholar]
- Shoetan, P., & Familoni, B. (2024). Transforming fintech fraud detection with advanced artificial intelligence algorithms. Finance & Accounting Research Journal, 6, 602–625. [Google Scholar] [CrossRef]
- Ssetimba, I., Kato, J., Piny, E., Twineamatsiko, E., Nakayenga, H., & Muhangi, E. (2024). Advancing electronic communication compliance and fraud detection through machine learning, NLP and generative AI: A pathway to enhanced cybersecurity and regulatory adherence. World Journal of Advanced Research and Reviews, 23(2), 697–707. [Google Scholar] [CrossRef]
- Straub, V. J., Morgan, D., Bright, J., & Margetts, H. (2023). Artificial intelligence in government: Concepts, standards, and a unified framework. Government Information Quarterly, 40(4), 101881. [Google Scholar] [CrossRef]
- Sun Yin, H. H., Langenheldt, K., Harlev, M., Mukkamala, R. R., & Vatrapu, R. (2019). Regulating cryptocurrencies: A supervised machine learning approach to de-anonymizing the bitcoin blockchain. Journal of Management Information Systems, 36(1), 37–73. [Google Scholar] [CrossRef]
- Sureshbhai, P. N., Bhattacharya, P., & Tanwar, S. (2020, June 7–11). KaRuNa: A blockchain-based sentiment analysis framework for fraud cryptocurrency schemes. 2020 IEEE International Conference on Communications Workshops (ICC Workshops) (pp. 1–6), Dublin, Ireland. [Google Scholar]
- Tatineni, S. (2023). Security and compliance in parallel computing cloud services. International Journal of Science and Research (IJSR), 12(10), 972–1977. [Google Scholar] [CrossRef]
- Tian, Y., Zhao, X., & Huang, W. (2022). Meta-learning approaches for learning-to-learn in deep learning: A survey. Neurocomputing, 494, 203–223. [Google Scholar] [CrossRef]
- Toprak, A., & Turan, M. (2023). Enhanced named entity recognition algorithm for financial document verification. Journal of Supercomputing, 79(17), 19431–19451. [Google Scholar] [CrossRef]
- Truby, J., Brown, R., & Dahdal, A. (2020). Banking on AI: Mandating a proactive approach to AI regulation in the financial sector. Law and Financial Markets Review, 14(2), 110–120. [Google Scholar] [CrossRef]
- Tsamados, A., Aggarwal, N., Cowls, J., Morley, J., Roberts, H., Taddeo, M., & Floridi, L. (2022). The ethics of algorithms: Key problems and solutions. AI & Society, 37, 215–230. [Google Scholar]
- Turksen, U., Benson, V., & Adamyk, B. (2024). Legal implications of automated suspicious transaction monitoring: Enhancing integrity of AI. Journal of Banking Regulation, 25, 359–377. [Google Scholar] [CrossRef]
- van Eck, N. J., & Waltman, L. (2017). Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics, 111, 1053–1070. [Google Scholar] [CrossRef] [PubMed]
- Vavikar, S., & Ostrowski, D. A. (2025, February 3–5). A generative AI-based framework for decentralized finance and cryptocurrency fraud prevention. 2025 19th International Conference on Semantic Computing (ICSC) (pp. 302–305), Laguna Hills, CA, USA. [Google Scholar] [CrossRef]
- Vidhya, G., Nirmala, D., & Manju, T. (2023). Quality challenges in deep learning data collection in perspective of artificial intelligence. Journal of Information Technology and Computing, 4(1), 46–58. [Google Scholar] [CrossRef]
- von Rueden, L., Mayer, S., Beckh, K., Georgiev, B., Giesselbach, S., Heese, R., Kirsch, B., Walczak, M., Pfrommer, J., Pick, A., Ramamurthy, R., Garcke, J., Bauckhage, C., & Schuecker, J. (2023). Informed machine learning—A taxonomy and survey of integrating prior knowledge into learning systems. IEEE Transactions on Knowledge and Data Engineering, 35(1), 614–633. [Google Scholar] [CrossRef]
- Vuković, D. B., Dekpo-Adza, S., & Matović, S. (2025). AI integration in financial services: A systematic review of trends and regulatory challenges. Humanities and Social Sciences Communications, 12, 562. [Google Scholar] [CrossRef]
- West, J., & Bhattacharya, M. (2016). Intelligent financial fraud detection: A comprehensive review. Computers & Security, 57, 47–66. [Google Scholar] [CrossRef]
- Yu, L., Zhang, F., Ma, J., Yang, L., Yang, Y., & Jia, W. (2023, June 18–23). Who are the money launderers? Money laundering detection on blockchain via mutual learning-based graph neural network. 2023 International Joint Conference on Neural Networks (IJCNN) (pp. 1–8), Gold Coast, Australia. [Google Scholar]















| Article | Reference | Citations | Major Contributions and Objectives | Top Criticisms or Issues Reviewed | Main Methodological Aspects | 
|---|---|---|---|---|---|
| Financial Fraud: A Review of Anomaly Detection Techniques and Recent Advances | Hilal et al. (2022) | 648 | Review prevalent anomaly detection techniques; emphasize semi-/unsupervised learning advances; spotlight emerging methodologies; establish foundational resource | No explicit criticisms or implementation challenges discussed | Systematic literature review; focus on comparative advantages of semi-/unsupervised techniques | 
| Artificial intelligence and machine learning in finance: A bibliometric review | Ahmed et al. (2022) | 409 | Review AI/ML literature (2011–2021); identify thematic domains; map contributors and trends | Limited journal scope; no methodological critique; focus on mapping over evaluation | Bibliometric approach; use of RStudio, VOSviewer, Excel; trend, citation, co-authorship analyses | 
| Machine learning techniques for anti-money laundering (AML) solutions in suspicious transaction detection: a review | Z. Chen et al. (2018) | 335 | Comprehensive review of ML techniques for AML suspicious transaction detection; synthesis of supervised, unsupervised, and hybrid models; focus on scalable, adaptive, and explainable solutions. | Challenges include imbalanced datasets, evolving money laundering tactics, data scarcity, high false positives, and limited model explainability affecting compliance. | Analysis of supervised, unsupervised, and hybrid ML models; emphasis on feature engineering, handling imbalanced data, evaluation metrics, and ensuring computational efficiency. | 
| Regulating Cryptocurrencies: A Supervised Machine Learning Approach to De-Anonymizing the Bitcoin Blockchain | Sun Yin et al. (2019) | 307 | Supervised ML model to de-anonymize Bitcoin entities; high predictive accuracy with practical prototype | Limited to 12 categories; reliance on labeled data; anonymity and ethical concerns; generalizability questioned | Gradient Boosting; large dataset of labeled clusters; cross-validated accuracy & F1; prototype implementation | 
| Explainable Artificial Intelligence (XAI) from a user perspective: A synthesis of prior literature and problematizing avenues for future research | Haque et al. (2023) | 229 | SLR on user-centric XAI; identifies explanation dimensions & user impacts; develops integrated framework & research agenda | Focused on user gaps; lacks empirical testing; calls for studies across varied user segments and contexts | Qualitative synthesis; framework creation for future research | 
| Banking on AI: mandating a proactive approach to AI regulation in the financial sector | Truby et al. (2020) | 204 | Advocacy for proactive AI regulation; balanced view of AI’s benefits and risks; risk–benefit analysis across actors and jurisdictions | Regulatory lag; risk of reactive over-regulation; challenges of global alignment | Normative policy analysis; risk-benefit framework; comparative jurisdictional evaluation | 
| Generative AI: A systematic review using topic modelling techniques | Gupta et al. (2024) | 162 | Provides a systematic review of Generative AI (GAI) literature from 1985 to 2023, analyzing a corpus of 1319 Scopus records; identifies the prevailing themes and topic clusters in the GAI research landscape | Pinpoints challenges and research gaps in GAI, particularly in areas such as explainability, robustness, cross-modal and multi-modal generation, interactive co-creation, data privacy, and security | Employs topic modeling techniques likely including BERTopic on a comprehensive bibliographic dataset | 
| Application of Beneish M-Score Models and Data Mining to Detect Financial Fraud | Herawati (2015) | 161 | Investigates the effectiveness of the Beneish M-Score model and data mining techniques in detecting financial fraud in financial statements. | Highlights limitations of traditional audit procedures in identifying fraud; emphasizes need for analytical tools like M-Score to improve detection accuracy. | Uses Beneish M-Score model (based on financial ratios) and applies data mining approaches to analyze company financial reports for fraud risk classification. | 
| Meta-learning approaches for learning-to-learn in deep learning: A survey | Tian et al. (2022) | 155 | Reviews meta-learning techniques that enhance deep learning performance with limited data by leveraging prior knowledge. It categorizes key approaches and highlights their real-world applications across various domains. | Highlights that despite growing interest and advances, there remains limited exploration of meta-learning in real-world contexts indicating a gap between theoretical development and practical applications. | Employs a systematic review methodology, detailing classical algorithms and recent enhancements across the three meta-learning categories. | 
| A framework for understanding artificial intelligence research: insights from practice | Bawack et al. (2021) | 154 | Proposes a classification framework to better align information systems (IS) research with contemporary AI practices. It seeks to bridge the gap between academic studies and industry implementations. | Reveals a misalignment: practitioners view AI in varying ways as a field of study, a concept, an ability, or a system whereas academic IS research predominantly treats AI as an ability, with limited exploration of its adoption, usage, or impact. | Conducted a review of 103 practitioner documents (from 25 Fortune 500 tech companies) to derive the framework, then applied it to classify 110 IS research publications on AI to expose existing knowledge gaps. | 
| Journal | Category/Quartile | Quartile | Article | Citations | 
|---|---|---|---|---|
| Expert Systems with Applications | Operations Research & Management Science, Computer Science, Artificial Intelligence, Engineering, Electrical & Electronic | Q1 | Financial Fraud: A Review of Anomaly Detection Techniques and Recent Advances | 648 | 
| Research in International Business and Finance | Business, Finance | Q1 | Artificial intelligence and machine learning in finance: A bibliometric review | 409 | 
| Knowledge and Information Systems | Computer Science, Artificial Intelligence, Computer Science, Information Systems | Q2 | Machine learning techniques for anti-money laundering (AML) solutions in suspicious transaction detection: a review | 335 | 
| Journal of Management Information Systems | Information Science & Library Science, Computer Science, Information Systems, Management | Q1 | Regulating Cryptocurrencies: A Supervised Machine Learning Approach to De-Anonymizing the Bitcoin Blockchain | 307 | 
| Technological Forecasting and Social Change | Regional & Urban Planning, Business | Q1 | Explainable Artificial Intelligence (XAI) from a user perspective: A synthesis of prior literature and problematizing avenues for future research | 229 | 
| Law and Financial Markets Review | Law | Q2 | Banking on AI: mandating a proactive approach to AI regulation in the financial sector | 204 | 
| Data and Information Management | Management Information Systems, Library and Information Sciences | Q3 | Generative AI: A systematic review using topic modelling techniques | 162 | 
| Procedia-Social and Behavioral Sciences | Management, Social Science | Title discontinued as of 2019 | Application of Beneish M-Score Models and Data Mining to Detect Financial Fraud | 161 | 
| Neurocomputing | Computer Science, Artificial Intelligence | Q1 | Meta-learning approaches for learning-to-learn in deep learning: A survey | 155 | 
| Journal of Enterprise Information Management | Information Science & Library Science | Q1 | A framework for understanding artificial intelligence research: insights from practice | 154 | 
| AI Methodology | Compliance Application | Key Benefit | 
|---|---|---|
| Machine Learning | Transaction monitoring, anomaly detection | Adaptive, reduces false positives | 
| Deep Learning | Complex fraud pattern recognition | High accuracy in large, complex datasets | 
| NLP | Communication analysis, adverse media screening | Detects scams, enhances due diligence | 
| Generative AI | Synthetic data, scenario simulation | Prepares for emerging fraud tactics | 
| AI Methodology | EU (Risk-Based, Structured) | U.S. (Decentralized, Sectoral) | China (Centralized, Control-Oriented) | 
|---|---|---|---|
| Machine Learning/Deep Learning | Must adhere to transparency, bias checks, documentation | Used under BSA/KYC regulations; must provide human oversight | Strict deployment monitoring; must ensure data compliance and social alignment | 
| NLP | High transparency, explanation, and governance standards | Used in communications/adverse media; must avoid bias | Closely monitored content; labeling/monitoring enforced | 
| Generative AI | Labeling, data documentation, and risk-tiered oversight | Voluntary watermarking encouraged; oversight varies by state | Heavily regulated; must label content and pass security screenings | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez Valencia, L.; Ochoa Arellano, M.J.; Gutiérrez Figueroa, S.A.; Mur Nuño, C.; Monsalve Piqueras, B.; Corrales Paredes, A.d.V.; Bemposta Rosende, S.; López López, J.M.; Puertas Sanz, E.; Levi Alfaroviz, A. A Systematic Review of Artificial Intelligence Applied to Compliance: Fraud Detection in Cryptocurrency Transactions. J. Risk Financial Manag. 2025, 18, 612. https://doi.org/10.3390/jrfm18110612
Rodríguez Valencia L, Ochoa Arellano MJ, Gutiérrez Figueroa SA, Mur Nuño C, Monsalve Piqueras B, Corrales Paredes AdV, Bemposta Rosende S, López López JM, Puertas Sanz E, Levi Alfaroviz A. A Systematic Review of Artificial Intelligence Applied to Compliance: Fraud Detection in Cryptocurrency Transactions. Journal of Risk and Financial Management. 2025; 18(11):612. https://doi.org/10.3390/jrfm18110612
Chicago/Turabian StyleRodríguez Valencia, Leslie, Maicol Jesús Ochoa Arellano, Santos Andrés Gutiérrez Figueroa, Carlos Mur Nuño, Borja Monsalve Piqueras, Ana del Valle Corrales Paredes, Sergio Bemposta Rosende, José Manuel López López, Enrique Puertas Sanz, and Asaf Levi Alfaroviz. 2025. "A Systematic Review of Artificial Intelligence Applied to Compliance: Fraud Detection in Cryptocurrency Transactions" Journal of Risk and Financial Management 18, no. 11: 612. https://doi.org/10.3390/jrfm18110612
APA StyleRodríguez Valencia, L., Ochoa Arellano, M. J., Gutiérrez Figueroa, S. A., Mur Nuño, C., Monsalve Piqueras, B., Corrales Paredes, A. d. V., Bemposta Rosende, S., López López, J. M., Puertas Sanz, E., & Levi Alfaroviz, A. (2025). A Systematic Review of Artificial Intelligence Applied to Compliance: Fraud Detection in Cryptocurrency Transactions. Journal of Risk and Financial Management, 18(11), 612. https://doi.org/10.3390/jrfm18110612
 
        






 
       