Pregnancy-Associated Plasma Protein-A and Free β-Human Chorionic Gonadotrophin in Relation with Oxidative Stress in Obese Pregnant Women: A Clinical Cross-Sectional Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Ethical Concerns
2.2. Design of Study and Participants
2.3. Anamnestic Data
2.4. Anthropometric Measures
2.5. Maternal and Pregnancy Factors
2.6. Determination of β-hCG and PAPP-A Markers
2.7. Maternal Blood Sample Preparation and Determination of OS Markers
2.8. Sample Size Calculation and Statistical Data Analysis
3. Results
3.1. Basic Demographic and Anthropometric Data of Study Group
3.2. Fetal Markers
Pro-Oxidative Blood Markers in Early Pregnancy
3.3. Correlation Analysis of Prooxidant Markers and Fetal and Maternal Markers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Toboła-Wróbel, K.; Pietryga, M.; Dydowicz, P.; Napierała, M.; Brązert, J.; Florek, E. Association of Oxidative Stress on Pregnancy. Oxidative Med. Cell. Longev. 2020, 2020, 6398520. [Google Scholar] [CrossRef] [PubMed]
- Aouache, R.; Biquard, L.; Vaiman, D.; Miralles, F. Oxidative Stress in Preeclampsia and Placental Diseases. Int. J. Mol. Sci. 2018, 19, 1496. [Google Scholar] [CrossRef] [PubMed]
- Ghulmiyyah, L.; Sibai, B. Maternal mortality from preeclampsia/eclampsia. Semin. Perinatol. 2012, 36, 56–59. [Google Scholar] [CrossRef]
- Zhang, J.; Meikle, S.; Trumble, A. Severe maternal morbidity associated with hypertensive disorders in pregnancy in the United States. Hypertens. Pregnancy 2003, 22, 203–212. [Google Scholar] [CrossRef]
- Duhig, K.; Chappell, L.C.; Shennan, A.H. Oxidative stress in pregnancy and reproduction. Obstet. Med. 2016, 9, 113–116. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Leslie, K.; Thilaganathan, B.; Papageorghiou, A. Early prediction and prevention of pre-eclampsia. Best Pract. Res. Clin. Obstet. Gynaecol. 2011, 25, 343–354. [Google Scholar] [CrossRef] [PubMed]
- Grzeszczak, K.; Łanocha-Arendarczyk, N.; Malinowski, W.; Ziętek, P.; Kosik-Bogacka, D. Oxidative Stress in Pregnancy. Biomolecules 2023, 13, 1768. [Google Scholar] [CrossRef]
- Hussain, T.; Murtaza, G.; Metwally, E.; Kalhoro, D.H.; Kalhoro, M.S.; Rahu, B.A.; Sahito, R.G.A.; Yin, Y.; Yang, H.; Chughtai, M.I.; et al. The Role of Oxidative Stress and Antioxidant Balance in Pregnancy. Mediat. Inflamm. 2021, 27, 9962860. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mukherjee, I.; Dhar, R.; Singh, S.; Sharma, J.B.; Nag, T.C.; Mridha, A.R.; Jaiswal, P.; Biswas, S.; Karmakar, S. Oxidative stress-induced impairment of trophoblast function causes preeclampsia through the unfolded protein response pathway. Sci. Rep. 2021, 11, 18415. [Google Scholar] [CrossRef]
- Mütze, S.; Rudnik-Schöneborn, S.; Zerres, K.; Rath, W. Genes and the preeclampsia syndrome. J. Perinat. Med. 2008, 36, 38–58. [Google Scholar] [CrossRef]
- Zhang, C.X.W.; Candia, A.A.; Sferruzzi-Perri, A.N. Placental inflammation, oxidative stress, and fetal outcomes in maternal obesity. Trends Endocrinol. Metab. 2024, 35, 638–647. [Google Scholar] [CrossRef] [PubMed]
- Mannino, A.; Sarapis, K.; Moschonis, G. The Effect of Maternal Overweight and Obesity Pre-Pregnancy and during Childhood in the Development of Obesity in Children and Adolescents: A Systematic Literature Review. Nutrients 2022, 14, 5125. [Google Scholar] [CrossRef] [PubMed]
- Weng, J.; Couture, C.; Girard, S. Innate and Adaptive Immune Systems in Physiological and Pathological Pregnancy. Biology 2023, 12, 402. [Google Scholar] [CrossRef] [PubMed]
- Brouwers, L.; Franx, A.; Vogelvang, T.E.; Houben, M.L.; van Rijn, B.B.; Nikkels, P.G. Association of Maternal Prepregnancy Body Mass Index with Placental Histopathological Characteristics in Uncomplicated Term Pregnancies. Pediatr. Dev. Pathol. 2019, 22, 45–52. [Google Scholar] [CrossRef]
- Layden, A.J.; Bertolet, M.; Parks, W.T.; Adibi, J.J.; Roberts, J.M.; Catov, J.M. Prepregnancy obesity and risk of placental inflammation at term: A selection bias analysis. Ann. Epidemiol. 2023, 86, 25–33.e7. [Google Scholar] [CrossRef]
- Musa, E.; Salazar-Petres, E.; Arowolo, A.; Levitt, N.; Matjila, M.; Sferruzzi-Perri, A.N. Obesity and gestational diabetes independently and collectively induce specific effects on placental structure, inflammation and endocrine function in a cohort of South African women. J. Physiol. 2023, 601, 1287–1306. [Google Scholar] [CrossRef]
- Sferruzzi-Perri, A.N.; Lopez-Tello, J.; Salazar-Petres, E. Placental adaptations supporting fetal growth during normal and adverse gestational environments. Exp. Physiol. 2023, 108, 371–397. [Google Scholar] [CrossRef]
- Napso, T.; Lean, S.C.; Lu, M.; Mort, E.J.; Desforges, M.; Moghimi, A.; Bartels, B.; El-Bacha, T.; Fowden, A.L.; Camm, E.J.; et al. Diet-induced maternal obesity impacts feto-placental growth and induces sex-specific alterations in placental morphology, mitochondrial bioenergetics, dynamics, lipid metabolism and oxidative stress in mice. Acta Physiol. 2022, 234, e13795. [Google Scholar] [CrossRef]
- Patil, M.; Panchanadikar, T.M.; Wagh, G. Variation of papp-a level in the first trimester of pregnancy and its clinical outcome. J. Obstet. Gynaecol. India 2014, 64, 116–119. [Google Scholar] [CrossRef]
- Lu, J.; Qi, D.; Xu, W. Fertility-enhancing effect of oil-based contrast agents during hysterosalpingography and the variation of this effect within a 3-year follow-up period in infertile patients. Front. Med. 2022, 9, 948945, Erratum in Front. Med. 2023, 10, 1325057. [Google Scholar] [CrossRef]
- Mannaerts, D.; Faes, E.; Gielis, J.; Van Craenenbroeck, E.; Cos, P.; Spaanderman, M.; Gyselaers, W.; Cornette, J.; Jacquemyn, Y. Oxidative stress and endothelial function in normal pregnancy versus pre-eclampsia, a combined longitudinal and case control study. BMC Pregnancy Childbirth 2018, 18, 60. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://isshp.org/isshp-guidelines-for-hypertensive-disorders-of-pregnancy-published/ (accessed on 20 January 2024).
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by the thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Green, L.C.; Wagner, D.A.; Glogowski, J.; Skipper, P.L.; Wishnok, J.S.; Tannenbaum, S.R. Analysis of nitrate, nitrite and [15 N] nitrate in biological fluids. Anal. Biochem. 1982, 126, 131–138. [Google Scholar]
- Auclair, C.; Voisin, E. Nitroblue Tetrazolium Reductionin: Handbook of Methods for Oxygen Radical Research; Greenvvald, R.A., Ed.; CRC Press: Boca Raton, FL, USA, 1985; pp. 123–132. [Google Scholar]
- Pick, E.; Keisari, Y. A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. J. Immunol. Methods 1980, 38, 161–170. [Google Scholar] [CrossRef]
- Cruickshank, T.; MacDonald, T.M.; Walker, S.P.; Keenan, E.; Dane, K.; Middleton, A.; Kyritsis, V.; Myers, J.; Cluver, C.; Hastie, R.; et al. Circulating growth differentiation factor 15 is increased preceding preeclampsia diagnosis: Implications as a disease biomarker. J. Am. Heart Assoc. 2021, 10, e020302. [Google Scholar] [CrossRef] [PubMed]
- Duckitt, K.; Harrington, D. Risk factors for pre-eclampsia at antenatal booking: Systematic review of controlled studies. BMJ 2005, 330, 565. [Google Scholar] [CrossRef] [PubMed]
- Moghaddas Sani, H.; Zununi Vahed, S.; Ardalan, M. Preeclampsia: A close look at renal dysfunction. Biomed. Pharmacother. 2019, 109, 408–416. [Google Scholar] [CrossRef]
- Rana, S.; Lemoine, E.; Granger, J.P.; Karumanchi, S.A. Preeclampsia: Pathophysiology, Challenges, and Perspectives. Circ. Res. 2019, 124, 1094–1112. [Google Scholar] [CrossRef]
- Paré, E.; Parry, S.; McElrath, T.F.; Pucci, D.; Newton, A.; Lim, K.H. Clinical risk factors for preeclampsia in the 21st century. Obstet. Gynecol. 2014, 124, 763–770. [Google Scholar] [CrossRef]
- Spradley, F.T. Metabolic abnormalities and obesity’s impact on the risk for developing preeclampsia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017, 312, R5–R12. [Google Scholar] [CrossRef]
- Lamminpää, R.; Vehviläinen-Julkunen, K.; Gissler, M.; Heinonen, S. Preeclampsia complicated by advanced maternal age: A registry-based study on primiparous women in Finland 1997–2008. BMC Pregnancy Childbirth 2012, 12, 47. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wu, N. Gestational Diabetes Mellitus and Preeclampsia: Correlation and Influencing Factors. Front. Cardiovasc. Med. 2022, 9, 831297. [Google Scholar] [CrossRef]
- Spracklen, C.N.; Smith, C.J.; Saftlas, A.F.; Robinson, J.G.; Ryckman, K.K. Maternal hyperlipidemia and the risk of preeclampsia: A meta-analysis. Am. J. Epidemiol. 2014, 180, 346–358. [Google Scholar] [CrossRef]
- Alston, M.C.; Redman, L.M.; Sones, J.L. An Overview of Obesity, Cholesterol, and Systemic Inflammation in Preeclampsia. Nutrients 2022, 14, 2087. [Google Scholar] [CrossRef] [PubMed]
- Bartsch, E.; Medcalf, K.E.; Park, A.L.; Ray, J.G.; High Risk of Pre-eclampsia Identification Group. Clinical risk factors for pre-eclampsia determined in early pregnancy: Systematic review and meta-analysis of large cohort studies. BMJ 2016, 353, i1753. [Google Scholar] [CrossRef]
- Burton, G.J.; Jauniaux, E. Placental Oxidative Stress: From Miscarriage to Preeclampsia. J. Soc. Gynecol. Investig. 2004, 11, 342–352. [Google Scholar] [CrossRef]
- Moretti, M.; Phillips, M.; Abouzeid, A.; Cataneo, R.N.; Greenberg, J. Increased breath markers of oxidative stress in normal pregnancy and in preeclampsia. Am. J. Obstet. Gynecol. 2004, 190, 1184–1190. [Google Scholar] [CrossRef] [PubMed]
- Motedayen, M.; Rafiei, M.; Rezaei Tavirani, M.; Sayehmiri, K.; Dousti, M. The relationship between body mass index and preeclampsia: A systematic review and meta-analysis. Int. J. Reprod. Biomed. 2019, 17, 463–472. [Google Scholar] [CrossRef]
- Moslemi Zadeh, N.; Naghshvar, F.; Peyvandi, S.; Gheshlaghi, P.; Ehetshami, S. PP13 and PAPP-A in the First and Second Trimesters: Predictive Factors for Preeclampsia? ISRN Obstet. Gynecol. 2012, 2012, 263871. [Google Scholar] [CrossRef]
- Goetzinger, K.R.; Singla, A.; Gerkowicz, S.; Dicke, J.M.; Gray, D.L.; Odibo, A.O. Predicting the risk of pre-eclampsia between 11 and 13 weeks’ gestation by combining maternal characteristics and serum analytes, PAPP-A and free β-hCG. Prenat. Diagn. 2010, 30, 1138–1142. [Google Scholar] [CrossRef]
- Hájek, P.; Macek, M.; Hladíková, M.; Houbová, B.; Alan, D.; Durdil, V.; Fiedler, J.; Malý, M.; Ostádal, P.; Veselka, J.; et al. Pregnancy-associated plasma protein A and proform eosinophilic major basic protein in the detection of different types of coronary artery disease. Physiol. Res. 2008, 57, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Hantoushzadeh, S.; Ahangari, R.; Balaneji, S.S.; Ghamari, A.; Hashemnejad, M.; Piri, S. Correlation of Fetal Heart Rate, Uterine Artery Pulsatility Index, Pregnancy Associated Plasma Protein-A and Crown-Rump Length in Pre-eclampsia—A Prospective Cohort Study. Maedica 2023, 18, 50–54. [Google Scholar] [PubMed]
Variables | Non-Obese Group (Mean ± SD) (n = 40) | Obese Group (Mean ± SD) (n = 31) | p |
---|---|---|---|
Age old [years] | 29.92 ± 4.37 | 27.13 ± 3.01 | 0.679 |
Body weight [kg] | 69.02 ± 2.21 | 97.09 ± 2.11 | 0.000 |
Body height [cm] | 167.33 ± 8.19 | 167.58 ± 5.07 | 0.770 |
Body mass index [kg/m2] | 21.08 ± 2.27 | 27.91 ± 4.04 | 0.000 |
Time from previous pregnancy [months] | 36.88 ± 4.18 | 60.81 ± 1.34 | 0.000 |
Gestational week | 12.42 ± 0.71 | 12.35 ± 0.55 | 0.998 |
First pregnancy [%] | Yes 16 [40%] | Yes 20 [64.51%] | 0.233 |
Spontaneous pregnancy conception [%] | Yes 40 [100%] | Yes 31 [100%] | 0.999 |
Variables | Non-Obese Group (Mean ± SD) (n = 40) | Obese Group (Mean ± SD) (n = 31) | p | ||
---|---|---|---|---|---|
Positive hereditary PE [%] | Yes 0 [0%] | No 40 [100%] | Yes 0 [0%] | No 31 [100%] | 0.889 |
Smoking before pregnancy [%] | Yes 0 [0%] | No 40 [100%] | Yes 0 [0%] | No 31 [100%] | 0.890 |
Smoking during pregnancy [%] | Yes 0 [0%] | No 40 [100%] | Yes 0 [0%] | No 31 [100%] | 0.923 |
Alcohol consumption before pregnancy [%] | Yes 0 [0%] | No 40 [100%] | Yes 0 [0%] | No 31 [100%] | 0.11 |
Alcohol consumption during pregnancy [%] | Yes 0 [0%] | No 40 [100%] | Yes 0 [0%] | No 31 [100%] | 0.937 |
Hypertension [%] | Yes 0 [0%] | No 40 [100%] | Yes 0 [0%] | No 31 [100%] | 0.899 |
Diabetes Mellitus [%] | Yes 0 [0%] | No 40 [100%] | Yes 1 [3.2%] | No 30 [96.8%] | 0.602 |
Antiphospholipid syndrome [%] | Yes 0 [0%] | No 40 [100%] | Yes 0 [0%] | No 31 [100%] | 0.902 |
Thrombophilia [%] | Yes 0 [0%] | No 40 [100%] | Yes 0 [0%] | No 31 [100%] | 0.877 |
Antihypertensives before pregnancy [%] | Yes 0 [0%] | No 40 [100%] | Yes 0 [0%] | No 31 [100%] | 0.901 |
Antihypertensives during pregnancy [%] | Yes 0 [0%] | No 40 [100%] | Yes 0 [0%] | No 31 [100%] | 0.967 |
Antidepressant before pregnancy [%] | Yes 0 [0%] | No 40 [100%] | Yes 0 [0%] | No 31 [100%] | 0.988 |
Antidepressant during pregnancy [%] | Yes 0 [0%] | No 40 [100%] | Yes 0 [0%] | No 31 [100%] | 0.956 |
Antiepileptics before pregnancy [%] | Yes 0 [0%] | No 40 [100%] | Yes 0 [0%] | No 31 [100%] | 0.978 |
Antiepileptics during pregnancy [%] | Yes 0 [0%] | No 40 [100%] | Yes 0 [0%] | No 31 [100%] | 0.989 |
Aspirin before pregnancy [%] | Yes 0 [0%] | No 40 [100%] | Yes 0 [0%] | No 31 [100%] | 0.899 |
Aspirin during pregnancy [%] | Yes 0 [0%] | No 40 [100%] | Yes 0 [0%] | No 31 [100%] | 0.923 |
Corticosteroids before pregnancy [%] | Yes 0 [0%] | No 40 [100%] | Yes 0 [0%] | No 31 [100%] | 0.945 |
Corticosteroids during pregnancy [%] | Yes 0 [0%] | No 40 [100%] | Yes 0 [0%] | No 31 [100%] | 0.998 |
Insulin before pregnancy [%] | Yes 0 [0%] | No 40 [100%] | Yes 1 [3.2%] | No 30 [96.8%] | 0.623 |
Insulin during pregnancy [%] | Yes 0 [0%] | No 40 [100%] | Yes 1 [3.2%] | No 30 [96.8%] | 0.713 |
Thyroxine before pregnancy [%] | Yes 0 [0%] | No 40 [100%] | Yes 0 [0%] | No 31 [100%] | 0.988 |
Thyroxine during pregnancy [%] | Yes 0 [0%] | No 40 [100%] | Yes 0 [0%] | No 31 [100%] | 0.967 |
Variables | Non-Obese Group (Mean ± SD) (n = 40) | Obese Group (Mean ± SD) (n = 31) | p |
---|---|---|---|
Fetal crown–rump length (CRL) [cm] | 61.54 ± 5.93 | 61.83 ± 13.75 | 0.886 |
Fetal nuchal translucency (NT) [mm] | 1.49 ± 0.26 | 1.40 ± 0.25 | 0.651 |
Free β-human chorionic gonadotrophin (B-hCG) [mUI/mL] | 1.59 ± 0.83 | 1.11 ± 0.68 | 0.000 |
Pregnancy-associated Plasma Protein A (PAPP-A) [MOM] | 1.50 ± 0.85 | 4.98 ± 0.99 | 0.000 |
Variables | Superoxide Anion Radical [nmol/mL] | Hydrogen Peroxide [nmol/mL] | Nitrites [nmol/mL] | Index of Lipid Peroxidation [micromol/mL] |
---|---|---|---|---|
Age [years] | r = 0.667 | r = 0.998 | r = 0.994 | r = 0.979 |
p = 0.089 | p = 0.243 | p = 0.331 | p = 0.353 | |
Body weight [kg] | r = 0.554 | r = 0.452 | r = −0.199 | r = 0.678 |
p = 0.000 | p = 0.000 | p = 0.000 | p = 0.000 | |
Body mass index [kg/m2] | r = 0.567 | r = 0.670 | r = −0.223 | r = 0.450 |
p = 0.000 | p = 0.000 | p = 0.000 | p = 0.000 | |
Time from previous pregnancy [months] | r = 0.442 | r = 0.409 | r = 0.471 | r = 0.229 |
p = 0.118 | p = 0.134 | p = 0.156 | p = 0.191 | |
Fetal crown–rump length (CRL) [cm] | r = 0.778 | r = 0.765 | r = 0.445 | r = 0.405 |
p = 0.243 | p = 0.190 | p = 0.221 | p = 0.198 | |
Fetal nuchal translucency (NT) [mm] | r = 0.677 | r = 0.655 | r = 0.509 | r = 0.407 |
p = 0.201 | p = 0.199 | p = 0.276 | p = 0.202 | |
Free β-human chorionic gonadotrophin (B-hCG) [mUI/mL] | r = −0.134 | r = −0.343 | r = 0.302 | r = −0.242 |
p = 0.021 | p = 0.033 | p = 0.019 | p = 0.022 | |
Pregnancy assocaited Plasma Protein A (PAPP-A) [MOM] | r = 0.498 | r = 0.245 | r = 0.433 | r = 0.331 |
p = 0.002 | p = 0.003 | p = 0.006 | p = 0.003 |
Variables | CRL [cm] | NT [mm] | B-hCG [mUI/mL] | PAPP-A [MOM] |
---|---|---|---|---|
Fetal crown–rump length (CRL) [cm] | 1 | r = 0.234 | r = 0.378 | r = −0.768 |
p = 0.002 | p = 0.004 | p = 0.001 | ||
Fetal nuchal translucency (NT) [mm] | r = 0.234 | 1 | r = 0.443 | r = −0.356 |
p = 0.002 | p = 0.004 | p = 0.004 | ||
Free β-human chorionic gonadotrophin (B-hCG) [mUI/mL] | r = 0.378 | r = 0.443 | 1 | r = −0.242 |
p = 0.004 | p = 0.004 | p = 0.022 | ||
Pregnancy-associated Plasma Protein-A (PAPP-A) [MOM] | r = −0.768 | r = −0.356 | r = 0.433 | 1 |
p = 0.001 | p = 0.004 | p = 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimitrov, V.; Mikerova, M.; Reshetnikov, V.; Mikhailovsky, V.; Raicevic, S.; Bolevich, S.; Jakovljevic, V.; Nikolic Turnic, T. Pregnancy-Associated Plasma Protein-A and Free β-Human Chorionic Gonadotrophin in Relation with Oxidative Stress in Obese Pregnant Women: A Clinical Cross-Sectional Study. Pathophysiology 2024, 31, 502-513. https://doi.org/10.3390/pathophysiology31030037
Dimitrov V, Mikerova M, Reshetnikov V, Mikhailovsky V, Raicevic S, Bolevich S, Jakovljevic V, Nikolic Turnic T. Pregnancy-Associated Plasma Protein-A and Free β-Human Chorionic Gonadotrophin in Relation with Oxidative Stress in Obese Pregnant Women: A Clinical Cross-Sectional Study. Pathophysiology. 2024; 31(3):502-513. https://doi.org/10.3390/pathophysiology31030037
Chicago/Turabian StyleDimitrov, Vanja, Maria Mikerova, Vladimir Reshetnikov, Victor Mikhailovsky, Sasa Raicevic, Sergey Bolevich, Vladimir Jakovljevic, and Tamara Nikolic Turnic. 2024. "Pregnancy-Associated Plasma Protein-A and Free β-Human Chorionic Gonadotrophin in Relation with Oxidative Stress in Obese Pregnant Women: A Clinical Cross-Sectional Study" Pathophysiology 31, no. 3: 502-513. https://doi.org/10.3390/pathophysiology31030037
APA StyleDimitrov, V., Mikerova, M., Reshetnikov, V., Mikhailovsky, V., Raicevic, S., Bolevich, S., Jakovljevic, V., & Nikolic Turnic, T. (2024). Pregnancy-Associated Plasma Protein-A and Free β-Human Chorionic Gonadotrophin in Relation with Oxidative Stress in Obese Pregnant Women: A Clinical Cross-Sectional Study. Pathophysiology, 31(3), 502-513. https://doi.org/10.3390/pathophysiology31030037